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Abstract

Numerical analysis is the study of computations with real numbers and the
concepts one needs to understand when performing these computations on
a modern computer. One such concept is the fact that real numbers are a
mathematical abstraction: the field of real numbers is infinite, whereas computers
are inherently finite. For this reason, computers cannot represent all real numbers
exactly and thereby need to round off almost any number to one of only few
which they can represent. The extent to which this affects the overal accuracy
of the computation is called numerical sensitivity.

One of the basic measures of numerical sensitivity is the condition number,
which depends on the computational problem one wishes to solve. It reflects,
roughly, how accurately a problem can be solved (regardless of how the solution is
obtained) if the input data are subject to small perturbations such as the roundoff
that computers introduce. This thesis studies the theory and computation of
condition numbers. One of its main tenets is that, by formulating numerical
problems geometrically, one uncovers key insights about their sensitivity.

This dissertation follows two main paths, the first of which concerns the condition
number of tensor decomposition problems. A tensor is the mathematical structure
of an array of numbers. Decomposing a tensor can be viewed as breaking up
an array of data into elementary components to reveal hidden structure in the
tensor. This computation is the crux of a variety of algorithms used for data
analysis. Since the decomposition is used to interpret the structure of the data,
it is essential to quantify how sensitive the decomposition is to perturbations.
This can be captured with the condition number.

The first major contribution of the thesis is a proof that, for a broad class
of tensor decompositions, the condition number is invariant under Tucker
compression. This property can be exploited to speed up the computation of the
condition number by several orders of magnitude, so that it is now practically
feasible to compute the condition number of some decompositions of large
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iv ABSTRACT

tensors.

The second path in the thesis concerns the theory of condition numbers of more
general problems, specifically the solution of systems of equations. It presents
a new framework that can be used to explain why a system is ill-conditioned.
With this framework, it is possible to compute condition numbers of partially
specified systems of equations and partial solutions. Using this information, one
can quantify which equations and variables contribute the most to the condition
number of a system of equations. The utility of this new theory is illustrated
for Tucker decompositions of tensors.



Beknopte samenvatting

De numerieke analyse is de studie van berekeningen met reële getallen en de
begrippen die men moet kennen bij het uitvoeren van deze berekeningen op
een moderne computer. Één van deze begrippen is het feit dat de reële getallen
een wiskundige abstractie zijn: het veld van reële getallen is oneindig, terwijl
computers inherent eindig zijn. Om deze reden kunnen computers niet alle
reële getallen exact voorstellen en moeten ze bijna elk getal afronden naar
één van de weinige die ze wel exact kunnen voorstellen. De mate waarin dit
de nauwkeurigheid van de berekening in het geheel beïnvloedt noemt men
numerieke sensitiviteit.

Één van de voornaamste maten van numerieke sensitiviteit is het conditiegetal,
dat afhangt van het op te lossen computationele probleem. Dit geeft ongeveer
weer hoe nauwkeurig een probleem opgelost kan worden (ongeacht hoe
de oplossing gevonden wordt) als de invoergegevens onderhevig zijn aan
kleine verstoringen, zoals de afrondingen aangebracht door computers. Deze
thesis bestudeert de theorie en berekening van conditiegetallen. Één van
de voornaamste uitgangspunten erin is dat men door numerieke problemen
meetkundig te formuleren essentiële inzichten opdoet omtrent sensitiviteit.

Dit proefschrift volgt in grote lijnen twee paden, waarvan het eerste handelt over
het conditiegetal van tensorontbindingsproblemen. Een tensor is de wiskundige
structuur van een meerdimensionale rij getallen. Het ontbinden van een
tensor kan beschouwd worden als het opdelen van getabelleerde gegevens in
bestanddelen die de structuur in de tensor onthullen. Deze berekening staat
centraal in verscheidene algoritmen gebruikt in de gegevensanalyse. Aangezien
de ontbinding gebruikt wordt om de structuur van de gegevens te interpreteren
is het essentieel om te meten hoe gevoelig de ontbinding is aan onnauwkeurigheid
op de gegevens. Deze informatie wordt bevat door het conditiegetal.

De eerste voorname bijdrage van de thesis is een bewijs dat het conditiegetal van
een brede klasse van tensorontbindingen invariant is onder Tucker-compressie.

v
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Deze eigenschap kan gebruikt worden om de berekening van het conditiegetal
met enkele grootteordes te verstellen. Hierdoor is het nu praktisch haalbaar om
het conditiegetal te berekenen van enkele ontbindingen van grote tensoren.

Het tweede pad in de thesis behandelt de theorie van conditiegetallen van meer
algemene problemen, meer bepaald het oplossen van stelsels vergelijkingen.
Hierin wordt een nieuw kader voorgesteld dat gebruikt kan worden om te
verklaren waarom een stelsel slecht geconditioneerd is. Met dit kader is het
mogelijk om conditiegetallen te berekenen van gedeeltelijk gespecificeerde
stelsels vergelijkingen en gedeeltelijke oplossingen. Met deze informatie kan men
kwantitatief uitdrukken welke vergelijkingen en veranderlijken het meest aan
het conditiegetal van het stelsel bijdragen. Het nut van deze nieuwe theorie
wordt geïllustreerd voor Tuckerontbindingen van tensoren.
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Chapter 1

Introduction

Computation is one of many aspects in life that are remarkably different in
theory and in practice. This is because the way we think about numbers in
mathematics is far removed from how they are treated in applications.

In mathematics, we paint an ideal picture of just about everything. We teach
students in secondary school that all real numbers together form a straight line
whose centre is the number zero and which extends to negative infinity on the
left and to positive infinity on the right. The number line is infinitely dense:
no matter how closely we look, there are always infinitely many real numbers
between any two points on the line.

Computer scientists, however, see a different picture. The usual system for
translating real numbers into bits in computer memory is the use of so-called
floating-point numbers, most commonly with double precision [OS06, Chapter
2]. This system attempts to fit the whole number line into a language where
every word is a number and the length of every word is eight bytes. A priori,
this language can only have 2568 or about 18 quintillion (18× 1019) words, and
thus, it can only talk about 18 quintillion numbers.

Though this may seem like an immensely expressive language, 18 quintillion
is nothing compared to the infinite length and density of the number line. In
mathematics, we are used to having unlimited precision (which is why we can
talk about numbers like π having infinite digits). When we do calculations with
computers, though, we need to accept that the words we have available cannot
express anything beyond the sixteenth significant digit. That is, if two numbers
have their first sixteen digits in common and only differ at the seventeenth digit,
the language of floating point numbers cannot express this difference.

1



2 INTRODUCTION

This contrast between the theory and the practice is enhanced when we consider
where numbers come from. Most numbers we work with do not come from
mathematics itself, but rather come to us as physical measurements or statistical
estimates. When we work with numbers in real life, we tend to know at most
a few digits after the decimal point. The sixteen digits that the floating point
system of computers permits look plentiful in comparison.

Because our mathematical view of numbers is vastly different to how applications
treat them, we must supplement our idealised mathematical theory with another
theory that reasons about numbers in an approximate (but no less rigorous)
sense. One of the key concepts for achieving this is that of a condition number.
The subject of this dissertation is the theory and computation of these numbers.

1.1 Sensitivity in action

Readers who have worked their way through a handful of introductory numerical
analysis textbooks might expect me to continue here by explaining what a matrix
is and what Gaussian elimination does. After all, the term “condition number”
is found so often in the same sentence as words like “matrix” and “Gaussian
elimination” that one might be led to believe that all these words are inextricably
linked. For a change, let us begin with a less orthodox example that is not
usually discussed in this context.

One of the most memorable events involving the clash of two aforementioned
perspectives on numbers is the discovery of chaos. I will summarise how
Gleick [Gle08] outlines the story here. In 1961, meteorologist Edward Lorenz
programmed a simulation tasked with forecasting the weather. This program
encoded the atmosphere as a handful of variables that evolve over time, called
the state. The state at any point could be calculated in terms of the state at
some time interval in the past. Therefore, he could program a simulation that
took physical measurements of the atmosphere (i.e., the initial conditions) and
use them to predict the state at the next moment, the moment after that, and
so on.

Wanting to study a sequence of predictions in detail, Lorenz took a predicted
state from an earlier simulation and used it as the initial conditions for a new
simulation. Naturally, one would expect the new simulation to predict the
exact same states that the earlier simulation had. In reality, though, the new
simulation briefly matched the original one, but diverged from it entirely after
a short time. The cause was that Lorenz had rounded off the initial conditions
to three digits while the computer calculated with six significant digits. Since
small disturbances in the atmosphere can drastically impact the weather over
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time – a phenomenon later dubbed the butterfly effect in popular science – this
initial roundoff made all the difference.

1.2 Condition numbers

Let us now shift gears when it comes to abstraction. In the foregoing example
and in all other calculations, we have three objects of interest: (i) an input x (in
the example: the initial weather conditions), (ii) an output y (e.g, the state of
the atmosphere a month in the future), and (iii) a model that expresses how the
output depends on the input (e.g., Lorenz’ weather equations). This model may
or may not be connected to predictions over time. In a very different context, x
can be a tabulation of all words in a document and y can be the probability
that the document is about the Roman Empire.

If we now remember that the input is not as precise and pure as we prefer it in
mathematics, the input that will actually be used is not x but some slightly
different quantity that we can write as x+∆x. For example, x could be changed
to x+ ∆x by rounding off the last digits, as Lorenz did. Another possible reason
is that we may not even know the exact input (with all its digits after the
decimal point). Since the input is different from its theoretically exact value, we
expect the output to be different to its theoretical value y as well and instead
be some value y + ∆y.

If we can estimate how much uncertainty there is on the value of the input, it
would be helpful to be able to estimate the uncertainty on the output. Such
an estimate is provided by the condition number. This number depends on the
model, and it is approximately equal to

max
∆x

∥∆y∥
∥∆x∥ = output uncertainty

input uncertainty

in which ∥∆x∥ and ∥∆y∥ are the size of ∆x and ∆y, respectively. The maximum
is taken over all sufficiently small1 perturbations ∆x. Concretely, this means
that the condition number gives the highest possible factor by which the model
could amplify small inaccuracies. In other words, it measures how sensitive the
output is to small changes in the input.

For any calculation on a computer, the condition number puts a limit on how
precise the result of the computation can generally be. Since computers usually
process numbers with at most sixteen digits of precision, a condition number of,
say, 1012 would indicate that the result of the calculation can only be trusted

1In the more rigorous Chapter 2, the maximum is replaced by a limit supremum as ∆x → 0.
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up to at most 16− 12 = 4 significant figures. Therefore, we want the algorithm
that does the calculation to actually deliver a solution this accurate (which not
all algorithms do). In jargon: an algorithm should be forward stable [Hig02].

1.3 Tensors

This thesis has two main themes: general theory of condition numbers and
applications of this theory to tensor decomposition problems. To introduce these
problems, let us look at a text classification algorithm by Anandkumar et al.
[Ana+14].

One of the simplest models for how texts carry meaning is the bag-of-words
model. This model states that the topic of a text can be inferred by looking
only at the words in the text, regardless of how they occur in a sentence. That
is, if we cut out every word in the text, place them all in a bag, and shuffle
the bag, the topic of the text is still identifiable from the words in the bag.
This assumption may not seem accurate, but it has proven to be effective as a
baseline model [JM09, §20.2].

The algorithm by Anandkumar et al. takes a corpus of many texts and identifies
the document topics covered in the corpus as well as the typical word choices per
topic. To do this, we proceed as follows: we make an empty three-dimensional
table with as many rows and columns as there are words in the dictionary. In
this example, I will use a three-word dictionary, but it will be larger in practice.
Then for every set of three words in a text, we add one to the table at position
(i, j, k) if the first word is the ith word in the dictionary, the second is the jth
word, and the third is the kth word. For instance, if i = 3, j = 1, k = 2, then
the table looks like this after seeing the first three words: 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

 .
After going through all texts, every cell in the table will count how often a
particular set of three words occurred in the whole corpus.

If we divide every count by the total number of words in all texts, we obtain
the empirical third moment tensor, denoted as A. The word tensor refers to the
mathematical structure of arrays of numbers, and empirical means that it was
constructed based on data rather than theory.

The goal is to find the relative frequency with which each topic is discussed
as well as the probability that each word is used, given the topic. The key to
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identifying these parameters is that, if we did know what they were, there would
have been another method for constructing the moment tensor.

The other method goes as follows: for each topic, we can predict what the
moment tensor would be if all texts were only on that topic. For example,
we could have a computer generate arbitrarily large bags of words using the
word probabilities and take the moment tensors of these generated bags of
words. An alternative (more clever) technique uses a closed formula [Ana+14,
Theorem 3.1]. If the number of topics is R, this would generate R moment
tensors, called A1,A2, . . . ,AR. If the relative frequencies with which the topics
occur are p1, p2, . . . , pR, then we expect

A = p1A1 + p2A2 + · · ·+ pRAR. (1.1)

The left-hand side of (1.1) is the moment tensor of the whole corpus, which
we have calculated. The right-hand side is unknown, since we do not know the
topic and word probabilities. However, the equation (1.1) often has a unique
solution in terms of A [Com+08]. Therefore, we can find the hidden parameters
by solving this equation.

Equations such as (1.1) are known as tensor decomposition problems because
they break up a tensor into simpler parts. Besides text classification, they have
found numerous applications in areas such as separation of signals, analysis of
psychological or chemical data, and compressed sensing, to name a few [KB09;
PFS16; Sid+17]. The condition number can help us understand how sensitive
the hidden variables are with respect to small inaccuracies in the tensor that we
want to decompose. If the condition number is large, then small errors in the
data can cause the parameters of the model to be very different and thereby
impossible to interpret.

1.4 Approach and intended audience

This introduction has been an appetiser to appreciate what condition numbers
are for. The mathematics I have used to study them is Riemannian geometry.
Therefore, this dissertation may appeal to audiences with a background in either
of the two historically separate fields of numerical analysis and geometry. Yet, it
does not fall squarely in either category. For being a text on numerical analysis,
the discussion on algorithms is thin on the ground. Likewise, this cannot be
considered a text on differential geometry since it does not even attempt to
advance the theory of manifolds. Instead, this dissertation is most appropriately
understood as lying somewhere in between. It should be read as a treatise
advocating that the geometry of a numerical problem is fundamental to one of
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the most basic questions one can ask about it: how accurately can we expect to
compute the solutions?

1.5 Outline

Figure 1.1 gives a graphical overview of the dissertation. It shows the two
main themes appearing throughout the thesis: condition numbers and tensor
decompositions. The left side of the diagram is the condition track, which
contributes to the general theory of condition numbers. This contribution is a
modular theory of condition, which means that it makes it possible to break up
a problem into smaller components. The right side is the tensor track, which
applies the existing theory of condition in the literature to tensor decompositions.
After the preliminary chapters, both tracks can be read independently of one
another. Although the condition track consists of the later chapters, I consider
it to be the most notable innovative contribution of the dissertation.

The remaining chapters can be summarised as follows.

Chapter 2 starts with an overview of the geometric prerequisites that
have been proven useful for a comprehensive understanding of condition
numbers. Then, the theory of condition numbers is built up from evaluation
of functions to solving systems of equations.

Chapter 3 summarises the algebra of tensors, with an emphasis on
decompositions such as tensor rank, Waring, block term, and Tucker
decompositions. I also illustrate the relevance of the geometry of tensors
to the study of their condition number. Finally, some applications of tensor
decompositions are presented.

Chapter 4 is the first original contribution of the tensor track. We derive
an invariance property of the condition number of most additive tensor
decompositions that allows for a drastic speedup of the computation time.
Another contribution is a joint analysis of some basic properties of tensor
manifolds that I call structured Tucker manifolds.

Chapter 5 extends the results of the preceding chapter to symmetric
tensor decompositions. It also establishes a connection between the
condition number of symmetric and non-symmetric additive tensor
decompositions.

Chapter 6 is the heart of the condition track. It introduces a new, modular
theory of condition that can quantify the impact that each constraint in a
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system of equations has on the condition number. The workhorse for this
is a new theory of condition for underdetermined systems. The theory is
illustrated by a computation of the condition number of two-factor matrix
decompositions and orthogonal Tucker decompositions.

Chapter 7 complements the theory of the preceding chapter. Whilst
Chapter 6 is about the contribution of each equation to the condition
number, this chapter gives a theory that quantifies the impact of each
solution variable. For example, this allows for the study of the sensitivity
of individual factors in tensor decompositions, which I illustrate for the
Tucker decomposition.

Finally, Chapter 8 presents the main conclusions and outlook of the
thesis.



8 INTRODUCTION

1. Introduction

2. Geometry & condition 3. Tensors

3.4. Tensor spaces (2)

Preliminaries
Contributions

4. SBTD

5. Symmetric decompositions

6. Underdetermined problems

6.6. Tucker decomposition (3)

7. Elimination of variables

8. Conclusion

Figure 1.1: Content graph of the dissertation. The arrows represent which
chapters serve as background knowledge for another chapter. Parentheses after
a section indicate that the section builds on more preliminary information
than the remainder of its chapter. The number in parentheses is the additional
prerequisite chapter.



Chapter 2

Geometric foundations of
condition

The aim of this chapter is to connect the chiefly numerical notion of condition
numbers to basic concepts in differential geometry. Condition numbers are
covered in every introductory course in numerical analysis, but they are rarely
formalised in the numerical literature. An improved understanding of the
condition number can come from an appreciation of the geometry of numerical
problems. This chapter scratches that itch.

The standard references on geometric condition numbers are [Blu+98; BC13],
from which I have borrowed major elements to write this chapter. The literature
clustered around these two books emphasises condition as a tool for complexity
analysis and homotopy continuation. By contrast, this text stays true to one
main aspect of condition: an estimate of rounding errors. This is achieved
by tracing all occurrences of the condition number back to Rice’s definition,
introduced in Section 2.2. Another difference is that I shine the spotlight on
the major class of numerical problems in this thesis: inverse problems.

The geometric preliminaries are established in Section 2.1. The key objects
introduced in this section are Riemannian manifolds and the differential of a
map. Readers unfamiliar with differential geometry are encouraged to gloss over
this section and come back to it when geometric concepts are invoked. The basic
definition of condition of functions is presented in Section 2.2. In Section 2.3, the
concept of condition is lifted to more general numerical problems. This section
also gives an overview of how the condition number of several important classes
of numerical problems can be computed. Finally, Section 2.4 discusses how the

9
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condition number is related to other concepts in numerical analysis besides
roundoff error. This last section can be regarded as supplementary content,
since it is not used in the remainder of the thesis.

2.1 Fundamentals of differential geometry

This section provides an overview of the geometric concepts used throughout
this thesis. All geometric fundamentals below come from the standard references
[Lee11; Lee13; Lee18]. For an introduction to differential geometry focused on
numerical aspects and optimisation, see e.g. the book by Absil, Mahony, and
Sepulchre [AMS08] or Boumal’s book [Bou23].

2.1.1 Smooth manifolds

The fundamental objects in differential geometry are smooth manifolds.
Intuitively, these are spaces that look Euclidean when zoomed in close enough.
They are exactly the spaces to which we can generalise standard concepts from
multivariable calculus, such as directional derivatives, integrals, vector fields,
tangent lines, etc. Many spaces that are familiar to numerical analysts can be
described as smooth manifolds, including

• any real vector space (in these spaces, differential geometry is exactly
multivariable calculus),

• smooth curves and surfaces in Rn,

• the n-dimensional sphere Sn = {(x0, . . . , xn) ∈ Rn+1 |
∑n

i=0 x
2
i = 1},

• m× n matrices of some fixed rank k ⩽ min{m,n}, and

• m× n matrices with orthonormal columns, i.e., the Stiefel manifold,

to name a few.

A precise definition of smooth manifolds is the following: a topological space
M is a smooth manifold of dimension n if all of the following holds:

• M has an open cover M =
⋃

α∈A Uα,

• for every α, there exists a homeomorphism (i.e., a map that is continuous
in both directions) ϕα : Uα → Bα where Bα is an open subset of Rn,
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• for all α, β where Uαβ := Uα ∩Uβ ̸= ∅, the transition map ϕα ◦ (ϕβ |Uαβ
)−1

is a smooth map from ϕβ(Uαβ) ⊆ Bβ to Bα, and

• the topology of M is Hausdorff and second countable.

The tuple (Uα, ϕα) is called a chart and ϕα is a chart map, but we will call it
chart for short. If p ∈M and ϕα(p) = 0, we call ϕα a chart centred at p. The
chart is usually thought of as a map that assigns an n-tuple of coordinates to
points in an open subset Uα of M. The properties imposed on the charts imply
two main properties: first, that every sufficiently small neighbourhood in M is
topologically the same an open subset of Rn and (second) that, for regions in
M with multiple coordinate maps, any change of local coordinates is a map
from Rn to Rn that is smooth in the sense of basic calculus.

The collection of charts {(Uα, ϕα)}α∈A is referred to as the smooth structure
of M. This name stems from how smooth maps are defined over M. Let
F : M → N be a map between smooth manifolds of dimension m and n,
respectively, and let p ∈ M be any point. Let ϕ and ψ be charts defined at p
and F (p), respectively. Then F is k times differentiable at p if F̂ := ψ ◦ F ◦ ϕ−1

is k times differentiable at ϕ(p). If this is the case for all k ∈ N, then F is smooth.
We can interpret F̂ as the local coordinate representation of F , i.e., it maps the
coordinates of p to the coordinates of F (p). Since F̂ maps an open set of Rn

into Rn, this definition of differentiability boils down to that of multivariable
calculus.

To linearise manifolds around a point, we use the tangent space. Intuitively, the
tangent space at a point p ∈M, denoted TpM is the set of all vectors tangent
to M at p. For instance, for a smooth surface M⊆ RN , the tangent space at
any point is the plane tangent to M. With this informal definition, TpM is
a subset of RN . It is sometimes desirable to define the tangent space only in
terms of M, rather than any ambient space in which M is embedded. This can
be done using directional derivatives.

For manifolds embedded in RN , the identification of a tangent vector ξ ∈ TpM
with a directional derivative operator is the following. The extension lemma
states that every smooth map F : M → R can be extended smoothly just
outside M, i.e., there is a smooth map FU : U → R defined on an open set
U ⊆ RN containingM such that F = FU |M. Then the directional derivative of
F along a tangent vector ξ can be defined just like in calculus:

∇ξF (p) := lim
t→0

F (p+ tξ)− F (p)
t

.

The identification between ξ and the operator ∇ξ can be used to define tangent
spaces of general manifolds (not just those that are embedded in RN ) as
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follows. Let p ∈ M be any point and let γ : (−ε, ε) →M be a smooth curve
such that γ(0) = p. The tangent vector corresponding to γ is the operator
ξ : C∞(M,R)→ R, F → (F ◦ γ)′(0). The point p is the origin of ξ. The set of
all tangent vectors whose origin is p forms a vector space, called the tangent
space of M at p, or TpM. Its dimension is dimM.

Every differentiable map F : M → N between smooth manifolds induces a
linear map on the tangent spaces of M and N , called the differential. Let p
in M and let ξ ∈ TpM be the tangent vector corresponding to some curve
γ. Then the differential of F at p takes ξ to the tangent vector η ∈ TF (p)N
corresponding to the curve F ◦ γ. This map is written as η = DF (p)[ξ]. This
vector η can be interpreted as the derivative of F in the direction of ξ.

The differential obeys standard properties of differentiation, such as the chain
rule, i.e., D(G◦F )(p) = DG(F (p))◦DF (p) for any differentiable map G defined
on N . If DF (p) is injective, F is an immersion. If DF (p) is surjective, F is
a submersion. A (topological) embedding is a map that is a homeomorphism
onto its image. A smooth embedding is a smooth immersion which is also an
embedding.

The differential plays the same role in differential geometry as the matrix of
partial derivatives (or Jacobian matrix) in multivariable calculus. Given charts
ϕ and ψ centred at p and F (p), respectively, the coordinate representation of F
is F̂ = ψ ◦F ◦ ϕ−1 : Rm → Rn, where m = dimM and n = dimN . The matrix
representation of the linear map DF̂ (ϕ(p)) : Rm → Rn is the Jacobian matrix
of F̂ .

Given a manifold M, some related spaces of points can be shown to admit
a manifold structure. For instance, the product of two smooth manifolds M
and N is a smooth manifold. A topological subspace S of M is an embedded
submanifold of M if it has a smooth structure such that the inclusion S ↪→M
is a smooth embedding.

2.1.2 Riemannian manifolds

To study numerical analysis, we need a notion of distance to express errors.
In differential geometry, the standard definition of distance is induced by a
Riemannian metric. A metric on a smooth manifold M is an inner product
defined on the tangent space, i.e., at any point p ∈M, the metric is a positive
definite bilinear form gp : TpM×TpM→ R. In coordinates induced by a chart ϕ
at p, we can write gp as a positive definite matrix Gp, such that gp(ξ, η) = ξ⃗TGpη⃗

where ξ⃗ and η⃗ are the coordinate tuples of ξ and η, respectively.
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A Riemannian metric is a metric whose coordinate matrix Gp is a smooth
function of p. The metric is also written as gp(ξ, η) = ⟨ξ, η⟩. The norm induced
by ⟨·, ·⟩ is written as ∥·∥. A smooth manifold with a specified Riemannian
metric is called a Riemannian manifold. A Riemannian submanifold ofM is an
embedded submanifold of M whose metric is a restriction of the metric on M.

The Riemannian metric induces a definition of length of a curve overM. A curve
γ : [a, b]→M is admissible if it is piecewise smooth and its differential is never
zero. The length of an admissible curve γ is the integral L[γ] :=

∫ b

a
∥γ′(t)∥dt

where γ′(t) is the differential of γ.

Between any two points p, q ∈ M, the Riemannian or geodesic distance is
defined as

d(p, q) = inf {L[γ] | γ is an admissible curve from p to q} .

If there are no admissible curves connecting p and q, then d(p, q) :=∞. If M
is a Euclidean space (i.e., a finite-dimensional inner product space), then the
shortest curve from p to q is a straight line. Its length is the Euclidean distance
between p and q.

A special type of curves are geodesics, which are defined by having zero curvature
relative to M. They can be thought of as curves of constant speed on M that
are as close to straight lines as possible. That is, geodesics have zero curvature in
every direction tangent toM. A precise definition can be found in the textbook
[Lee18]. For example, over the unit sphere Sn, the geodesics are precisely the
circle segments of unit radius. For any p, q ∈ M such that d(p, q) ̸= ∞, any
curve γ such that L[γ] = d(p, q) can be parametrised a geodesic.

Given a point p ∈ M and a vector ξ ∈ TpM sufficiently close to 0, there is a
unique geodesic γξ such that γ(0) = p and γ′(0) = ξ. The exponential map is
defined as expp : TpM→M, ξ 7→ γξ(1). It is a local diffeomorphism between
M and TpM. The local inverse of the exponential map is the logarithmic map
logp.

The logarithmic map provides a convenient choice of coordinates, called normal
coordinates. Let B be any orthonormal basis for TpM and let F : TpM→ Rn

be the coordinate map relative to B. Then the associated normal coordinate
map at p is ϕ := F ◦ logp. This chart preserves the metric information of M at
p. In particular, Dϕ(p) is unitary and geodesics through p are mapped to lines
in Rn.
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2.2 The condition number of a map

When browsing the literature on computational mathematics, one encounters
various objects named condition numbers. The earliest use of the term is in
Turing’s paper on matrix computations [Tur48], where the condition number
of a matrix A ∈ Rn×n is defined as 1

n∥A∥
∥∥A−1

∥∥. An entirely different notion
of condition was introduced by Renegar [Ren95], where the condition number
measures the distance to the nearest ill-posed problem. Additionally, there is a
whole zoo of ad hoc definitions of condition that serve to estimate the numerical
error of specific algorithms.

This ambiguity is not unlike that of the term singularity. Depending on the
context, singularity may refer to a property of matrices over arbitrary fields,
functions of real or complex variables, or algebraic varieties. While these notions
of singularity are all related, the precise definition depends on the context. Such
is the case for condition as well.

To avoid any “condition number zoo,” we take a general definition of condition
due to Rice [Ric66] and show how various notions of condition may be derived
from it. This definition can be stated as follows.

Definition 2.1. Let F : X → Y be any map between metric spaces with
distances dX and dY , respectively. Then the condition number (or simply
condition) of F at any point x0 ∈ X is

κ[F ](x0) := lim sup
x→x0

dY(F (x0), F (x))
dX (x0, x) ,

where the limit is to be understood in the metric topology.

Evaluating F at x0 is said to be ill-conditioned if κ[F ](x0) is large (by some
subjective standard, typically several orders of magnitude) and well-conditioned
otherwise.

We will omit the subscripts in dX and dY occurring in Definition 2.1 when it
does not compromise on clarity. An equivalent definition reflects the way in
which condition numbers are usually applied: κ[F ](x0) is the smallest number
κ such that

d(F (x0), F (x)) ⩽ κ · d(x0, x) + o(d(x0, x)) as x→ x0. (2.1)

Recall that the expression “o(f(x)) as x→ x0” is shorthand for an unspecified
function g(x) that converges to zero faster than f(x) does. That is, for all L > 0,
there exists a neighbourhood U of x0 such that |g(x)| ⩽ L|f(x)| for all x ∈ U .
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In (2.1), d(x0, x) is the error on the data and d(F (x0), F (x)) is the induced
error on the result of the computation. The asymptotic term o(d(x0, x)) is often
neglected when x is sufficiently close to x0. Thus, (2.1) can be used as a back-
of-the-envelope estimate of errors in numerical computations. It is from this
estimate that the concept of the condition number as a measure of sensitivity
emerges. The right-hand side of (2.1) is more or less the expected error when F
is evaluated numerically [Arm10].

Sometimes a distinction is made between absolute and relative condition numbers.
For a metric space M contained in a normed vector space, the relative error
between two points p, q ∈M \ {0} is defined as dr(p, q) := d(p, q)/∥p∥. Unless
∥·∥ is constant over M, this is not a distance function. A common definition of
the relative condition number is

κr[F ](x0) := lim sup
x→x0

dr(F (x0), F (x))
dr(x0, x) = ∥x0∥

∥F (x0)∥ lim sup
x→x0

d(F (x0), F (x))
d(x0, x) .

Note that κr[F ](x0) and κ[F ](x0) are the same up to a factor ∥x0∥/∥F (x0)∥.
For this reason, most of our focus will be on the absolute condition number.

Example 2.2. (Turing’s condition number [Tur48; BC13, §1.2]) Let Σ ⊆ Rn×n

be the set of singular n× n matrices. Consider Rn×n as a metric space defined
by the spectral norm ∥·∥. At any X0 ∈ Rn×n \ Σ, the absolute and relative
condition number of F : Rn×n \ Σ→ Rn×n : X → X−1 are, respectively,

κ[F ](X0) =
∥∥X−1

0
∥∥2 and κr[F ](X0) = ∥X0∥

∥∥X−1
0
∥∥.

Remark 2.3. Because Turing’s condition number ∥X0∥
∥∥X−1

0
∥∥ appears in

sensitivity estimates of many problems associated with the matrix X0 (e.g.,
those in [SS90], especially Part III), it is referred to as the condition number of
X0 by most numerical analysts. I caution against this usage of the term, though,
since it obfuscates for what problem the quantity ∥X0∥

∥∥X−1
0
∥∥ is actually the

condition number. If it is not emphasised that this usage may not be equivalent
to Definition 2.1, the inattentive reader might read “the condition number of
X0” and conclude (erroneously) that just about every problem involving X0
has ∥X0∥

∥∥X−1
0
∥∥ as its condition number.

If F is a smooth map between Riemannian manifolds, the condition number
can be computed in terms of the differential of F . This is expressed by the
following theorem, which is sometimes used as the definition of the condition
number [BC13, §14.3].

Theorem 2.4 (Rice’s theorem). Let X and Y be Riemannian manifolds and
let x0 ∈ X be any point. For any F : X → Y that is differentiable at x0, the
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condition number with respect to the geodesic distance satisfies

κ[F ](x0) = ∥DF (x0)∥ := sup
0 ̸=ξ∈Tx0 X

∥DF (x0)[ξ]∥
∥ξ∥

.

This theorem is usually attributed to Rice [Ric66]. However, the original proof
requires that the radial distance function dx0 : x 7→ d(x0, x) be differentiable at
x0. Riemannian distances never have this property, since the radial distance is
locally the composition of a normal coordinate map (i.e., a diffeomorphism) and
the Euclidean norm (which has a singularity at the origin) [Lee18, Corollary
6.12]. For this reason, an updated proof is presented below.

Proof. Let ϕ : x 7→ x̂ and ψ : y 7→ ŷ be normal coordinate charts of X and Y,
centred at x0 and F (x0), respectively. Define F̂ := ψ ◦ F ◦ ϕ−1. For all x in
some neighbourhood of x0, it holds that

d(x0, x) = ∥x̂∥ and d(F (x0), F (x)) =
∥∥∥F̂ (x̂)

∥∥∥
where ∥·∥ is the Euclidean norm [Lee18, Corollary 6.12]. This equivalence allows
for the following exchange of limits:

lim sup
x→x0

d(F (x0), F (x))
d(x0, x) = lim sup

x̂→0

d(F (x0), F (x))
d(x0, x) = lim sup

x̂→0

∥∥∥F̂ (x̂)
∥∥∥

∥x̂∥
. (2.2)

Applying Taylor’s theorem gives F̂ (x̂) = DF̂ (0)[x̂]+o(∥x̂∥) as x̂→ 0. Therefore,
by the triangle inequality,∥∥∥DF̂ (0)[x̂]

∥∥∥− o(∥x̂∥) ⩽ ∥∥∥F̂ (x̂)
∥∥∥ ⩽

∥∥∥DF̂ (0)[x̂]
∥∥∥+ o(∥x̂∥) as x̂→ 0.

Hence,

lim sup
x̂→0

∥∥∥F̂ (x̂)
∥∥∥

∥x̂∥
= lim sup

x̂→0


∥∥∥DF̂ (0)[x̂]

∥∥∥
∥x̂∥

+ o(1)

 . (2.3)

Since
∥∥∥DF̂ (0)[x̂]

∥∥∥/∥x̂∥ is constant along lines punctured at the origin, the limit
supremum is an ordinary supremum over all x̂ ≠ 0. Therefore, the above equals∥∥∥DF̂ (0)

∥∥∥. Since DF̂ (0) ∼= DF (x0) up to multiplication by unitary linear maps,∥∥∥DF̂ (0)
∥∥∥ = ∥DF (x0)∥. Combining this with (2.2) and (2.3) gives the desired

result.
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Remark 2.5. Though Rice’s theorem applies foremost to the geodesic distance,
it is true for any asymptotically equivalent distance. We say that two distances
d and d̃ in a metric space M are asymptotically equivalent if, for any p ∈M,
it holds that d̃(p, q) = d(p, q)(1 + o(1)) as q → p, for q ∈ M. The asymptotic
term o(1) vanishes in Definition 2.1.

In particular, if M is a Riemannian submanifold of Rn, then the geodesic
distance d and the restriction of the Euclidean distance d̃ from Rn to M are
asymptotically equivalent. To see this, write expp : TpM→ Rn as a map between
normed linear spaces with the Taylor expansion expp ξ = p+ ξ+O(∥ξ∥2). Since
expp is a local embedding, we have

lim
q→p

∥q − p∥
d(q, p) = lim

ξ→0

∥∥expp ξ − p
∥∥

d(expp ξ, p)
= lim

ξ→0

∥ξ∥+O(∥ξ∥2)
∥ξ∥

= 1.

Hence, d is asymptotically equivalent to the Euclidean distance.

2.3 Geometry of numerical problems

Not all numerical problems are presented to us as explicit functions to be
evaluated. For example, consider the problem of finding real roots of x3 + ax2 +
bx + c = 0 given the tuple (a, b, c) ∈ R3. Depending on (a, b, c), there may
be one, two, or three solutions. How should the problem be modelled as the
evaluation of a function F (a, b, c)? If the problem is to find all real roots, it is
not clear what the space is in which the output F (a, b, c) lives. If, instead, we
are asked to find at least one root, the problem cannot be modelled as a function
F : R3 → R, since multiple outputs may correspond to the same input. Given
that we cannot easily model the problem as a function, how do we interpret its
condition number? This section provides an answer.

2.3.1 The geometric condition number

The aforementioned problem motivates the geometric study of numerical
problems and their condition numbers, pioneered by Blum, Cucker, Shub,
and Smale [Blu+98] and by Bürgisser and Cucker [BC13]. It allows us to
think abstractly about numerical problems without abandoning Rice’s theory of
condition. Most of this section is my interpretation of the framework in [Blu+98;
BC13].

A general numerical problem has an input space X and an output space Y . The
set of all admissible input/output pairs is a subset P of X × Y. I will simply
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refer to P as “the problem”, since P encapsulates all information about the
relationship between inputs and outputs. In the literature, P is also called the
solution variety or solution manifold depending on the geometric properties of P .
When we solve a numerical problem, we are given x ∈ X such that (x, y) ∈ P for
some unknown y. The goal, then, is to find (at least one) y such that (x, y) ∈ P .

For example, solving monic cubic equations over the real numbers can be
modelled in terms of the solution variety

P =
{

(x, y)
∣∣x = (a, b, c) ∈ R3 and y3 + ay2 + by + c = 0

}
⊆ R3 × R.

Likewise, for problems defined as the evaluation of a map F : X → Y (as in
the previous section), P is the graph of F , defined as P := {(x, F (x)) |x ∈ X}.
When we talk about “the geometry of a numerical problem”, we are interested
in properties of the projection maps πX : P → X , (x, y) 7→ x and πY : P →
Y, (x, y) 7→ y.

The geometry of a problem determines whether Rice’s definition of the condition
number can be naturally applied to it. For general numerical problems, we need
the concept of condition of P at a point (x0, y0) ∈ P, which we define next.

To generalise condition, we want to formalise the notion that, on P , the variable
y is a continuous function of x. The domain of P is the set of all x ∈ X that
have a corresponding solution, i.e., πX (P). Formally, the notion of continuity
that we want to express is that the inverse projection

π−1
X : πX (P)→ P

x 7→ (x, y)

is continuous. In other words, πX is a topological embedding. If this is the case,
we may define the solution map as the continuous map H := πY ◦ π−1

X , which
maps x to y such that (x, y) ∈ P. The condition number of this map may be
used as the definition for the condition number of P.

While this assumption on πX can be used to generalise condition slightly, the
above can only apply if P is the graph of a continuous function H. It seems
as though we have not made any progress towards our initial goal of studying
problems that are not merely the graph of a function! The key to remedying
this is that condition numbers are a local property. That is, instead of imposing
πX to be an embedding, it suffices that, at any point (x0, y0) of interest, the
restriction of πX to some neighbourhood U ⊆ P of (x0, y0) is an embedding.
This is visualised in Figure 2.1. We can formalise these insights as follows.

Definition 2.6. Let X and Y be metric spaces and let P be a subspace of
X × Y containing some point (x0, y0). Let πX and πY denote the projections
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X

Y

P

(x0, y0) U

(x0, y′
0)

x0 πX (U)

y0

πX

πY

Figure 2.1: Projections of a problem P ⊆ X × Y with a one-dimensional input
and output. At the point (x0, y0), the projection πX is a local embedding. Thus,
U is the graph of the locally defined solution map πY ◦ π−1

X : x 7→ y. This
means that every x that is sufficiently close to x0 corresponds to a unique
point (x, y) ∈ U , although it does not rule out the existence of another point
(x, y′) ∈ P \ U further away from (x0, y0). This example problem fails to be the
graph of a solution map at the self-intersection and at the rightmost point of P .

from P onto X and Y , respectively. Suppose that (x0, y0) has a neighbourhood
U such that πX |U is a topological embedding. Then the condition number of P
at (x0, y0) is

κ[P](x0, y0) := lim sup
(x,y)→(x0,y0)

(x,y)∈U

d(y0, y)
d(x0, x) = lim sup

x→x0
x∈πX (U)

d(y0, πY
(
π−1

X (x)
)
)

d(x0, x)

= κ[πY ◦ π−1
X ](x0)

where d is the distance and π−1
X is shorthand for (πX |U )−1. The map πY ◦ π−1

X
is the solution map.

Remark 2.7. Note that Definition 2.6 takes the limit over the domain πX (U),
i.e., all x corresponding to a point (x, y) ∈ P that is close to (x0, y0). This domain
may have a lower dimension than X , as in Figure 2.2. While Definition 2.6 is
quite natural given the geometric approach above, it is a surprisingly uncommon
intuition in numerical analysis that limits can be taken over a subset of X . This
can be a point of confusion when literature on geometric condition numbers is
put side-by-side with literature in numerical linear algebra (where most problems
are functions over an open subset of a linear space). If the domain is not all of
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X , then κ[P ](x0, y0) is sometimes called a structured condition number [ANT19;
GK93].

X

Y P
(x0, y0)

U

πX (P)

x0

πX (U)
y0

Figure 2.2: Example problem P whose domain πX (P) ⊆ X has a strictly lower
dimension than the input space X . Even though πX is not a homeomorphism
between U ⊆ P and an open subset of X , it is a local embedding. Hence, the
condition number is well-defined.

In general, the condition number in Definition 2.6 depends on both the input
x0 and the output y0. For problems such as the one visualised in Figure 2.1,
the input corresponds to multiple points (x0, y0) and (x0, y

′
0) on P, which do

not necessarily have the same condition number. In the special case of function
evaluation (Definition 2.1), the output depends uniquely on the input, so that
the condition number is a function of only the input variable x0.

The explicit dependence of the condition number on both x0 and y0 reminds us
that computing the condition number of a problem typically requires finding a
solution first. That is, to know how difficult a problem is numerically, one must
first solve it. After a solution pair (x0, y0) is known, the condition number can
be used to analyse how the problem behaves in a neighbourhood of (x0, y0).

2.3.2 Rice’s theorem generalised

Theorem 2.4 gives a convenient expression for the computation of the condition
number of a map. We wish to find a similar expression for general numerical
problems, under some smoothness assumptions.
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X

Y
P

ℓ

ℓ′

DπX (x0, y0)[ℓ]

DπX (x0, y0)[ℓ′]

(x0, y0)

Figure 2.3: Projections of lines tangent to a problem P ⊆ X × Y. For this
problem, X and Y are linear spaces, so that they can be identified with Tx0X
and Ty0Y , respectively. At (x0, y0), the tangent space to P is spanned by ℓ and
ℓ′. Its projection onto Tx0X has dimension one (rather than two) because ℓ′ is
parallel to Y.

If P is smooth, the condition number turns out to have a geometric
characterisation in terms of the slopes of lines tangent to P . Any line ℓ tangent to
P at (x0, y0) lives in the vector space T(x0,y0)P ⊆ Tx0X ×Ty0Y . The projections
from T(x0,y0)P onto Tx0X and Ty0Y are written formally as linear maps, i.e.,
DπX (x0, y0) and DπY(x0, y0), respectively. The projection of ℓ onto Tx0X is
either a line or a point. If it is a point (i.e., ℓ ∈ kerDπX (x0, y0)), we may
visualise ℓ as being parallel to Ty0Y , and linearly independent of Ty0Y otherwise,
as Figure 2.3 illustrates.

Recall that, in the definition of the condition number, we invoked the solution
map, which is defined if πX is a local embedding. If there are no lines tangent
to P at (x0, y0) which are parallel to Ty0Y, then πX is a local embedding (in
fact, a diffeomorphsim). The following statement expresses this fact.

Lemma 2.8. Let X and Y be smooth manifolds and let P be an embedded
submanifold of X × Y containing a point (x0, y0). Write the projection onto the
first component as πX : P → X , (x, y) 7→ x. If kerDπX (x0, y0) = {0}, then the
restriction of πX to some neighbourhood U of (x0, y0) is a diffeomorphism onto
its image.
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Proof. Combine [Lee13, Proposition 4.1] (to show that πX is a local immersion)
and the local embedding theorem [Lee13, Theorem 4.25].

Remark 2.9. Lemma 2.8 is a geometric analogue of the implicit function
theorem. In real analysis, this theorem states the following: let F : Rm × Rn →
Rn, (x, y) 7→ F (x, y) be a smooth function such that ∂

∂yF (x, y) is invertible at
some point (x0, y0) ∈ F−1(0). Then F−1(0) is locally the graph of some smooth
function H : x 7→ y [Lee13, Theorem C.40]. In our case, Lemma 2.8 implies that
P is locally the graph of πY ◦ π−1

X .

Proposition 2.10. In the context of Lemma 2.8, define a Riemannian metric
on X and Y and write Hx0,y0 := πY ◦ (πX |U )−1. Consider DπX (x0, y0) as a
surjection onto its image. Then

κ[P](x0, y0) = ∥DHx0,y0(x0, y0)∥ =
∥∥DπY(x0, y0) ◦DπX (x0, y0)−1∥∥ (2.4)

where ∥·∥ is the operator norm with respect to the Riemannian metrics. The
linear map DHx0,y0(x0, y0) is known as the condition map.

The condition map can be interpreted as follows. The projection of T(x0,y0)P
onto Tx0X is a linear subspace Vx0 ⊆ Tx0X . If DπX(x0, y0) is injective, then
every vector ξx ∈ Vx0 is the first component of a unique vector (ξx, ξy) tangent
to P at (x0, y0). The condition map is given by ξx 7→ ξy. In fact, this linear
map generalises the concept of slope, as the following example shows.

Example 2.11 (Condition number of a plane curve). Let X = Y = R and let
P ⊆ R2 be a smooth curve. For any (x0, y0), let ℓ be the line tangent to P at
(x0, y0) and write its slope as m. Suppose that m ̸= ±∞. Then, for any ξx ∈ R,
the unique vector in ℓ with ξx as its first component is (ξx,mξx). That is, the
condition map is given by R→ R, ξ 7→ mξ. The spectral norm of this map is
|m|.

2.3.3 Problems defined by equations

We have discussed how to characterise condition of a solution manifold P
as a purely geometric property of P relative to the input and output space.
Yet, numerical analysts would prefer a more computational description than
Proposition 2.10. To find it, we want to express P (locally) as the zero set of
equations over X and Y . This is always possible in theory if P is an embedded
submanifold of X×Y [Lee13, Theorem 5.8]. In practice, most numerical problems
are defined in terms of equations.
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Implicit problems

An implicit problem is defined as the problem of solving a system of equations
F (x, y) = c, where c is some constant (typically 0). Under some assumptions,
the theory above can be formulated in terms of the defining equations.

Proposition 2.12. Let X ,Y, and Z be smooth manifolds and let F : X ×Y →
Z, (x, y) 7→ F (x, y) be a smooth map such that ∂

∂yF (x, y) is invertible for all
(x, y). Consider any point (x0, y0, c) on the graph of F . Then P := F−1(c) is
an embedded submanifold of X × Y of the same dimension as X . Its condition
map at (x0, y0) is

DπY(x0, y0)DπX (x0, y0)−1 = −
(
∂

∂y
F (x0, y0)

)−1
∂

∂x
F (x0, y0). (2.5)

The spectral norm of this map is κ[P](x0, y0).

Proof. The first statement follows from the submersion level set theorem [Lee13,
Corollary 5.13]. Since F is constant over P, every ξ = (ξx, ξy) ∈ T(x0,y0)P
satisfies the relation

DF (x0, y0)[ξ] = ∂

∂x
F (x0, y0)[ξx] + ∂

∂y
F (x0, y0)[ξy] = 0. (2.6)

If ξx = 0, the above implies that ∂
∂yF (x0, y0)[ξy] = 0 and therefore ξy = 0. Thus,

kerDπX (x0, y0) consists of only (ξx, ξy) = (0, 0). This means that DπX (x0, y0)
is injective, and since dimP = dimX , it is invertible.

Now, let ξx be an arbitrary vector in Tx0X and let (ξx, ξy) be the unique vector
in T(x0,y0)P whose first component is ξx. Rearranging (2.6) gives

ξy = −
(
∂

∂y
F (x0, y0)

)−1
∂

∂x
F (x0, y0)ξx

as required. The last statement follows from Proposition 2.10.

Inverse problems

One important class of equations are inverse problems, i.e, equations of the
form G(y) = x for some map G. These equations rarely (if ever) receive special
attention in texts on geometric condition numbers. Yet, their usefulness in
data-driven applications cannot be overstated. Such equations arise when a
model G with hidden parameters y produces measurable data x. The goal is to
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solve for the parameters, given the data. In the remainder of this section, we
work out the condition number of a general inverse problem.

To find an expression of the condition number, we need the following definition.

Definition 2.13. Let A : V→W be a linear map between Euclidean spaces
and write the projection onto ImA as PIm A. The Moore–Penrose inverse of A,
written as A†, is the map Â−1PIm A, where the bijection Â : (kerA)⊥ → ImA
is defined by x 7→ Ax.

We will transform our problem into one to which Proposition 2.12 applies
and ultimately obtain an expression for the condition number. As usual, we
assume that X and Y are Riemannian manifolds and G is smooth. The solution
manifold is P := {(G(y), y) | y ∈ Y}, i.e., the transposition of the graph of
G. Recall that, for the condition number to be defined at all, we want πX to
be a local embedding. By Lemma 2.8, this is guaranteed (and πX is locally a
smooth embedding) if the zero vector is the only vector tangent to P whose first
component is zero. For inverse problems, this means that kerDG(y) = {0}, i.e.,
G is a smooth immersion.

Next, we turn the equation G(y) = x into something of the form F (x, y) = 0.
Fix any point (x0, y0) ∈ P . Since G is a local smooth embedding, there exists a
neighbourhood Uy0 of y0 such that X̂ := G(Uy0) is an embedded submanifold
of X of the same dimension as Y [Lee13, Theorem 5.2]. Pick any chart ϕ of
X̂ centred at x0 and define F : X̂ × Y → Rr, (x, y) → ϕ(x) − ϕ(G(y)). In a
neighbourhood of (x0, y0), we have (x, y) ∈ P ⇔ x = G(y)⇔ F (x, y) = 0.

Finally, we compute the partial derivatives of F . In the following, we define
DĜ(y) as DG(y) with its codomain restricted to ImDG(y). That is, at y ∈ Uy0 ,
we can write DĜ(y) : TyY → Tx0X̂ . By the chain rule,

∂

∂x
F (x, y) = Dϕ(x) and ∂

∂y
F (x, y) = Dϕ(G(y)) ◦DĜ(y).

Note that the linear map ∂
∂yF (x, y) : TyY → Rdim Y has a domain and codomain

of the same dimension and that it is injective. Hence, it is invertible. Note as
well that Dϕ(G(y)) = Dϕ(x) for all (x, y) ∈ P, since x = G(y). Hence, the
right-hand side of (2.5) becomes

−
(
∂

∂y
F (x0, y0)

)−1
∂

∂x
F (x0, y0) = −DĜ(y0)−1.

The operator norm of this map is
∥∥∥DĜ(y0)−1

∥∥∥ =
∥∥DG(y0)†

∥∥, which is equal
to the reciprocal of the smallest singular value of DG(y0) [GVL13, Chapter 5].
Thus, we can apply Proposition 2.12 to obtain the following.
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Proposition 2.14. Let X and Y be Riemannian manifolds and let G : Y → X
be a smooth immersion. Consider the solution manifold P := {(G(y), y) | y ∈ Y}.
At any point (x0, y0) ∈ P, we have

κ[P](x0, y0) =
∥∥DG(y0)†∥∥ = 1

σmin(DG(y0))

in which σmin(DG(y0)) is the nth largest singular value of DG(y0), where
n = dimY.

Some of the major numerical problems considered in this thesis are join
decomposition problems. For instance, additive tensor decompositions can be
modelled as instances of these problems. Their condition number can be
computed as follows.

Example 2.15 (Condition of join decompositions [BV18b]). For all r = 1, . . . , R,
let Yr be an embedded Riemannian submanifold of RN . Let n :=

∑R
r=1 dimYr.

Define the addition map

Σ :
:=Y︷ ︸︸ ︷

Y1 × · · · × YR →

:=X︷︸︸︷
RN

(a1, . . . , aR) 7→ a1 + · · ·+ aR

and the solution manifold P := {(Σ(y), y) | y ∈ Y} . At any point y0 =
(a1, . . . , aR), the differential DΣ takes (ȧ1, . . . , ȧR) 7→ ȧ1 + · · · + ȧR. We
can represent it in coordinates as follows. For all r = 1, . . . , R, let Tr be
a matrix whose columns are an orthonormal basis of Tar

Yr. In coordinates,
DΣ(y0) ∼= T := [T1 T2 · · · TR] ∈ RN×n. Let σn be the nth largest singular
value of T . If σn = 0, then κ[P](Σ(y0), y0) is defined to be infinite. Otherwise,
κ[P](Σ(y0), y0) = 1/σn.

Remark 2.16. For any problem P , the condition number measures the change
in y with respect to small changes in x, with the important constraint that
x ∈ πX (P) ⊆ X , i.e., (x, y) ∈ P has an exact solution. In practice, we may
have noisy input x that does not lie in πX (P), i.e., there may not be an
exact solution to x = G(y). In such cases, one often relaxes the equation to a
minimisation problem miny ∥x−G(y)∥. This is outside the scope of this thesis.
Whilst the condition numbers studied above can all be described in terms of the
orientation of T(x,y)P (i.e., a linear approximation of P) relative to the input
and output space, the condition number of finding miny ∥x−G(y)∥ depends
on the curvature of P as well. See [BV21] for a study of the condition number
of these problems.
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2.3.4 Summary

The geometric framework has allowed us to lift Rice’s definition of the condition
number and Rice’s theorem to general classes of problems. Table 2.1 gives an
overview of these different classes and the corresponding expressions for the
condition number.

Problem Condition number Formal statement
y = F (x) ∥DF (x0)∥ Theorem 2.4
x = G(y)

∥∥DG(y0)†
∥∥ Proposition 2.14

F (x, y) = c

∥∥∥∥( ∂
∂yF (x0, y0)

)−1
∂

∂xF (x0, y0)
∥∥∥∥ Proposition 2.12

(x, y) ∈ P
∥∥DπY(x0, y0)DπX (x0, y0)−1

∥∥ Proposition 2.10

Table 2.1: Overview of condition numbers of different classes of numerical
problems, under some smoothness assumptions.

2.4 Other aspects of condition

This section gives a few pointers to the literature on how condition numbers occur
in other areas of computational mathematics besides sensitivity to numerical
perturbations. Unlike the foregoing discussion on the sensitivity aspect of
condition, I only give a rough sketch of the other aspects in this section. For
more details and rigour, readers are directed to the literature referred to below.
Readers may choose to skip this section, as it does not contain prerequisite
knowledge for the remaining chapters.

2.4.1 Distance to ill-posedness

A major aspect of condition numbers is the study of so-called condition number
theorems. For a problem P ⊆ X ×Y , the ill-posed locus is the set of inputs x ∈ X
such that P is singular at x by some broad definition. A condition number
theorem is a result that expresses a relation (typically inverse proportionality)
between the condition number of P at some point (x0, y0) and the distance
from x0 to the ill-posed locus. Some of the earliest such results were derived
with a technique by Demmel [Dem87]. Arguably the most well-known condition
number theorem is the following.



OTHER ASPECTS OF CONDITION 27

Theorem 2.17 (Eckart–Young theorem [Sch07; EY36; Mir60]). Let X0 ∈ Rn×n

be an invertible matrix. Then

min
X : det X=0

∥X −X0∥
∥X0∥

= 1
∥X0∥

∥∥X−1
0
∥∥ (2.7)

where ∥·∥ is any unitarily invariant norm.

Note that, if ∥·∥ is the spectral norm, the right-hand side is the reciprocal of
Turing’s condition number (Example 2.2).

A similar result exists for the solution of homogeneous polynomial systems.
Every array x of coefficients with respect to the monomial basis defines a
homogeneous polynomial map px : Rm → Rn. We write the application of px

as some function F : (x, y) 7→ px(y). Then the problem of solving homogeneous
polynomial systems is characterised by the equation F (x, y) = 0.

The singular locus Σy of a point y ∈ Rm is defined as the set of all inputs
x such that y is a root of px whose multiplicity is at least two. Then at any
point (x, y) such that x /∈ Σy, the distance from px to Σy in the so-called
Bombieri-Weyl metric is inversely proportional to (a slight modification of) the
condition number κ[F−1(0)](x, y) [BC13, Theorem 16.19].

Because of condition number theorems such as the ones above, it may be
reasonable to define other quantities as the condition number if Definition 2.1
cannot be applied. For instance, consider the (primal) feasibility problem in
linear optimisation: given A ∈ Rm×n, determine whether kerA contains a vector
whose coordinates are all non-negative [NW06, Chapter 13]. The output of
this problem is a boolean value (true or false), so that Definition 2.1 cannot
meaningfully be applied.

Write the set of all matrices A ∈ Rm×n that are feasible by the aforementioned
definition as F . For matrices A on the boundary ∂F , arbitrarily small
perturbations to A could make the input either feasible or infeasible depending
on the direction of perturbation. In this context, Renegar [Ren95] defined
the condition number at A /∈ ∂F as 1/d(A, ∂F) where ∂F is the boundary
of F . This can be interpreted as an alternative measure of sensitivity. Every
condition number studied in this dissertation, though, is an application of Rice’s
Definition 2.1 rather than Renegar’s definition.

2.4.2 Computational complexity

The computational complexity analysis of iterative algorithms often involves
complexity bounds based on the condition number of the associated problem.
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Perhaps the most well-known such result is the convergence rate estimate of
the conjugate gradient method. This method solves linear systems of the form
Ay = b with a positive definite matrix A by generating a sequence of iterates
y(1), y(2), . . . that converge to the solution A−1b. It is well-known that the error,
as measured in the norm ∥y∥A :=

√
yTAy, decreases as

∥∥∥y(k) −A−1b
∥∥∥

A
⩽ 2

(√
κ− 1√
κ+ 1

)k ∥∥∥y(1) −A−1b
∥∥∥

A
, (2.8)

where κ := ∥A∥
∥∥A−1

∥∥ is the condition number of matrix inversion as in
Example 2.2 [NW06, Section 5.1]. The convergence factor can be approximated
as √

κ− 1√
κ+ 1 = 1− 2√

κ
+O

(
1
κ

)
as κ→∞.

Thus, the larger the condition number, the slower the expected convergence.

Another example of the connection between condition and complexity is in the
context of homotopy continuation. This is a technique for solving systems of
polynomial equations px(y) = 0, such as in Section 2.4.1. The basic approach is
to trace a parametrised curve γ(t) = (p(t)

x , y(t)) from t = 0 to t = 1 where, for
all t, p(t)

x is a polynomial and p
(t)
x (y(t)) = 0. The curve γ is chosen such that

the equation p(0)
x (y) = 0 is easy to solve for y and such that p(1)

x is equal to px,
i.e., the polynomial whose root is to be computed. The algorithm discretises
the interval [0, 1] as {t0 = 0, t1, . . . , tn = 1} and proceeds as follows: for each
i = 1, . . . , n, the value y(ti) is computed by solving p(ti)

x (y) = 0 using Newton’s
method, where y(ti−1) is used as an initial guess. The solution of px(y) = 0 is
obtained when i = n. For certain choices of γ, the computational complexity of
this algorithm is proportional to the integral of the (squared) condition number
over γ [BC13, Theorem 17.3].

The results presented in this subsection suggest that iterative algorithms are not
suitable for ill-conditioned problems. A workaround is to use preconditioning.
Assuming that the computational problem is the evaluation of a map F : X → Y ,
preconditioning is the act of decomposing F = F3 ◦ F2 ◦ F1 in which F1 and
F3 can be evaluated with a finite algorithm and F2 is well-conditioned and can
be evaluated with an iterative algorithm. This gives a three-step method for
evaluating F such that (hopefully) none of the three steps have a computational
complexity that is affected significantly by the condition number of the problem1.
For example, a system of linear equations Ay = b can be preconditioned as

1The term preconditioning can be somewhat misleading, as it does not actually reduce the
inherent sensitivity of F . In fact, the sensitivity is a property of the problem itself that cannot
be changed by an algorithm. Preconditioning is used purely for the sake of computational
complexity.
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(MA)y = Mb where M is some matrix such that the inversion of MA is well-
conditioned. Such preconditioning techniques are a major topic in numerical
linear algebra [Saa03].





Chapter 3

Tensor decompositions

3.1 Prelude

I want to take a few paragraphs to digress on an abstract debate into which I
was involuntarily thrown several years ago and which continued to haunt me
ever since.

This dissertation is the product of work between different research communities:
engineers and mathematicians. While both work with tensors, they cannot seem
to agree on what a tensor even is. In his notorious pickle paragraph [Lan12],
J.M. Landsberg recounts a comparable experience: “In the course of preparing
this book I have been fortunate to have had many discussions with computer
scientists, applied mathematicians, engineers, physicists, and chemists. Often
the beginnings of these conversations were very stressful to all involved. [...]
While [geometers and scientists] are interested in communicating, there are
language and even philosophical barriers to be overcome.”

These differing views are partially explained by different interests: engineers
prefer concrete, tangible representations of mathematical objects. In this context,
tangible means amenable to numerical computations. By contrast, algebraists
endeavour to detach an object’s representation from its algebraic relations. To
the algebraist, the rules an object obeys convey its essence, whereas its concrete
representations are merely a costume in which it presents itself. In our case, the
quarrel is over whether to represent a tensor as a numerical array or as a point
in an abstract space.

While the mathematical perspective is arguably more complete and succinct, its

31
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insistence on concealing any and all concrete representations is at times wholly
unhelpful for lay audiences. Indeed, when the goal is clear communication, we
sometimes want to call an abstract thing by a concrete name and get on with it.

It is for this reason that I am not committed to any definition of tensors
in particular. To balance both perspectives, this chapter is written mostly in
abstract terms, with indications as to how tensors can be represented numerically.
The numerical perspective is predominant throughout the remaining chapters.

3.2 Tensors

We start with an abstract definition of tensors in terms of multilinear maps and
derive some basic properties, following Greub’s book [Gre78]. Afterwards, we
present some common concrete representations of tensors.

3.2.1 The abstract tensor product

Definition 3.1. Let V1, . . . ,VD,W be vector spaces. A map f : V1×· · ·×VD →
W is multilinear if fixing any D − 1 arguments of f gives a linear map in the
remaining argument.

Definition 3.2. Let V1, . . . ,VD,T be vector spaces. A multilinear map ⊗ :
V1 × · · · × VD → T is a tensor product if, for every multilinear map f :
V1×· · ·×VD →W, there is a unique linear map L : T→W such that f = L◦⊗.
This relation can be expressed as the following commutative diagram:

V1 × · · · × VD W

T

f

⊗ L (3.1)

In this case, T is a tensor product space of V1 × · · · × VD, written as T =
V1 ⊗ · · · ⊗ VD, and its elements are tensors.

Tensor products are usually written with infix notation, i.e, v1 ⊗ · · · ⊗ vD :=
⊗(v1, . . . , vD). The property defining the tensor product, illustrated by (3.1), is
known as a universal property, the general form of which comes from category
theory. Universal properties can also be used to define free groups [Gal20,
Chapter 25] and quotient and product topologies [Mun14], to name a few
examples.
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Definition 3.2 is not vacuous, since the following abstract tensor product satisfies
the universal property [Gre78].

Definition 3.3. The formal tensor product of D vector spaces V1, . . . ,VD is
the set of all formal expressions

∑R
r=1 v

r
1 ⊗ · · · ⊗ vr

D in which vr
d ∈ Vd for all d

and v1, . . . , vD 7→ v1 ⊗ · · · ⊗ vD is multilinear.

The statement that ⊗ is multilinear means, for example, that the formal
expression (λu+ µv)⊗ w is considered equivalent to the expression λ(u⊗ w) +
µ(v⊗w). Since the definition of the formal tensor product does not impose any
properties other than multilinearity, it can be considered the least specific or
most rudimentary of all multilinear maps.

It is not surprising that the formal tensor product satisfies the universal property.
Indeed, (3.1) reads that any multilinear expression in v1, . . . , vD can be formed
by applying linear operations to the most rudimentary multilinear expression
in v1, . . . , vD, i.e., their formal tensor product.

The following theorem states that all tensor products are equivalent to the
formal tensor product. That is, all tensor products are “minimally specific”
multilinear maps.

Theorem 3.4 (Uniqueness of the tensor product). Let V1, . . . ,VD be vector
spaces and let ⊗ and ⊗̃ be tensor products over V1×· · ·×VD. Then there exists
a unique linear isomorphism A between V1 ⊗ · · · ⊗ VD and V1⊗̃ . . . ⊗̃VD such
that ⊗̃ = A ◦ ⊗.

Proof. Since ⊗ is a tensor product and ⊗̃ is multilinear, there exists a unique
linear map A such that ⊗̃ = A ◦⊗. Likewise, ⊗ = B ◦ ⊗̃ for a unique linear map
B. By combining these observations, we find that ⊗ = B ◦ A ◦ ⊗. By setting
f := ⊗ in Definition 3.2, we find that the identity map is the unique linear map
L such that ⊗ = L ◦ ⊗. Thus, B ◦A = Id. By the same argument, B ◦A = Id.
Hence, A is invertible.

We may summarise the discussion up until this point as follows:

1. the tensor product is multilinear,

2. the tensor product satisfies the universal property (3.1),

3. the formal tensor product satisfies points 1 and 2, and

4. all maps satisfying points 1 and 2 are equivalent.
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The fourth point is especially potent, as it allows us to switch between different
representations of a tensor without losing the essential information. In the next
subsection, we present some more concrete tensor products and illustrate their
equivalence.

3.2.2 Equivalence of concrete tensor products

Several multilinear operations other than the formal tensor product satisfy
Definition 3.2. The following is a list of alternative definitions, which can all
be said to define the tensor product in their respective contexts. The fact that
they are all tensor products in the sense of Definition 3.2 is shown in standard
references such as [Gre78; Lan12].

• (Contraction) For v1, . . . , vD ∈ V1 × · · · × VD, the tensor product is a
multilinear map

v1 ⊗ · · · ⊗ vD : V∗
1 × · · · × V∗

D → K

(α1, . . . , αD) 7→
D∏

d=1
αd(vd) (3.2)

where V∗
d = Hom(Vd,K) is the dual space of Vd. This definition is extended

linearly for general tensors, i.e., a sum of tensor products is a sum of
multilinear maps over V∗

1 × · · · × V∗
D.

• (Euclidean contraction) If an inner product ⟨·, ·⟩ is defined on V1, . . . ,VD,
we may identify

v1 ⊗ · · · ⊗ vD : V1 × · · · × VD → K

(u1, . . . , ud) 7→
D∏

d=1
⟨ud, vd⟩ .

In finite dimensional inner product spaces Vd, there is an identification
Vd
∼= V∗

d. That is, the covector αd ∈ V∗
d associated with ud ∈ Vd is the

linear map vd 7→ ⟨ud, vd⟩. Thus, the Euclidean contraction is a special
case of the above.

• (Outer product) Let v1 ∈ Kn1 , . . . , vD ∈ KnD . Then v1 ⊗ · · · ⊗ vD is an
array with D indices whose element at the index (i1, . . . , iD) is vi1

1 · · · v
iD

D ,
where vid

d is the idth coordinate of vd, for all d = 1, . . . , D. With this
interpretation, we can identify tensors with multi-indexed arrays, i.e.,

Kn1 ⊗ · · · ⊗KnD ∼= Kn1×···×nD .
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• (Multilinear multiplication) If A1, . . . , AD are linear maps defined on
V1, . . . ,VD, respectively, their tensor product is the linear map over
V1 ⊗ · · · ⊗ VD defined by

(A1 ⊗ · · · ⊗AD)(v1 ⊗ · · · ⊗ vD) = (A1v1)⊗ · · · ⊗ (ADvD).

For a tensor B ∈ V1 ⊗ · · · ⊗ VD, this operation is also written as
(A1, . . . , AD) · B. Multilinear multiplication is colloquially referred to
as multiplying B by a matrix on each side [KB09], since, if B ∈ Km×n is
a matrix, then (A1, A2) ·B = A1BA

T
2 .

• (Kronecker product) The traditional Kronecker product of A ∈ Km1×n1

and B ∈ Km2×n2 is

A⊗K B =

 a11B . . . a1n1B
... . . . ...

am11B . . . am1n1B

 .
The reversed Kronecker product is A⊗B := B⊗KA. We lift this definition
to n-tuples (i.e., numerical vectors) by identifying Kn ∼= Kn×1.

In the spirit of Theorem 3.4, all tensor products in this list will be written with
the symbol ⊗ and all objects in the span of these tensor products can be called
tensors. If it is essential to use a particular interpretation of the tensor product,
this interpretation will be specified wherever necessary.

Multilinear multiplication and the Kronecker product

The equivalence between some of the aforementioned tensor products is
illustrated by the so-called vec trick, a name coined in K. Borgwardt’s doctoral
thesis on kernel machines [Bor07]. This is not really a trick, so much as
a recognition of the fact that the Kronecker product and the multilinear
multiplication operator are both tensors whose representations are isomorphic
to each other. This uses the vectorisation operator, which we define next.

If we temporarily write the outer product and reversed Kronecker product as
⊗out and ⊘, respectively, then the vectorisation operator vec : Kn1×···×nD →
Kn1×···×nD is defined as the unique linear isomorphism vec such that ⊘ =
vec◦⊗out. Equivalently, we can define vec as reversing the order of the indices of
an array B and listing the components in lexicographic order. For matrices, this
corresponds to vertical stacking of the columns. This is the way most numerical
programming languages, such as Julia, NumPy, and GNU Octave implement
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vectorisation. The vec trick, then, is the identity

vec ((A1, . . . , AD) · X ) = (A1 ⊗R · · · ⊗R AD) vec X

for any tensor X ∈ Kn1×···×nD and matrices Ad ∈ Kmd×nd for d = 1, . . . , D.

Contraction and multi-indexed arrays

Similarly to the previous example, it is easy to translate between multilinear
maps (i.e., contractions) and multi-indexed arrays. For each d = 1, . . . , D, we
pick a basis {ed

j}
dim V∗

d
j=1 of V∗

d. For a given multilinear map ϕ we construct the
D-indexed array Aϕ whose coordinates are ai1,...,iD

:= ϕ(e1
i1
, . . . , eD

iD
).

To see that this construction is invertible, write an arbitrary β = (β1, . . . , βD) ∈
V∗

1 × · · · ×V∗
D in coordinates as βd =

∑dim V∗
d

id=1 bid
ed

id
. By multilinearity of ϕ, we

have

ϕ(β) = ϕ

dim V∗
1∑

i1=1
bi1e

1
i1
, . . . ,

dim V∗
D∑

iD=1
biD

eD
iD



=
dim V∗

1∑
i1=1

· · ·
dim V∗

D∑
iD=1

bi1 · · · biD
ϕ(e1

i1
, . . . , eD

iD
)︸ ︷︷ ︸

ai1,...,iD

, (3.3)

which expresses ϕ(β) only in terms of the coordinates of β and ai1,...,iD
. Thus,

we can invert the construction ϕ 7→ Aϕ as follows. Given a D-indexed array A
with components ai1,...,iD

we can associate it with a unique multilinear map ϕA ,
defined by (3.3). It can be verified that the coordinate array corresponding to
the multilinear map (3.2) is the outer product of v1, . . . , vD. This shows that
the contraction tensor product and outer product are equivalent up to a choice
of basis.

Flattenings

One more family of representations of tensors are the standard flattenings. These
turn a tensor A ∈ Kn1×···×nD in coordinates into a matrix of size nd×

∏
d′ ̸=d nd′

for some d ∈ {1, . . . , D}. The dth standard flattening can be defined through the
universal property of the tensor product as the unique linear map that satisfies

(·)(d) : a1 ⊗ · · · ⊗ aD 7→ ad vec (a1 ⊗ · · · ⊗ ad−1 ⊗ ad+1 ⊗ · · · ⊗ aD)T
.
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More concretely, if A is a coordinate array with indices (i1, . . . , iD), then for all
id = 1, . . . , nd, the idth row of A(d) can be formed by taking all coordinates of
A where dth index is id and listing them in reverse lexicographic order.

3.3 Decompositions

A frequently encountered problem in applications is to find tensor decompositions.
These come in two varieties: additive and multiplicative. A good overview of
tensor decompositions from a numerical perspective can be found in the review
by Kolda and Bader [KB09]. First, we look at additive decompositions.

3.3.1 Polyadic decomposition

Definition 3.5. A tensor A ∈ V1⊗ · · · ⊗VD is a rank-1 tensor or a polyad if it
can be expressed as a tensor product of some vectors v1, . . . , vD ∈ V1×· · ·×VD.
The set of all rank-1 tensors in V1 ⊗ · · · ⊗ VD is the Segre manifold over
V1 ⊗ · · · ⊗ VD.

Definition 3.6 ([Hit27]). A polyadic decomposition of a tensor A ∈ V1⊗· · ·⊗VD

is a set of rank-1 tensors {A1, . . . ,AR} whose sum is A. The cardinality of this
set is the length of the decomposition. The minimal R such that A has a polyadic
decomposition of length R is the rank of A. By convention the rank of the zero
tensor is zero. A polyadic decomposition of A of minimal length is a canonical
polyadic decomposition (CPD).

By Definition 3.3, every tensor has a polyadic decomposition. Computing a
polyadic decomposition of A of length R is equivalent to finding R vectors
vd

1 , . . . , v
d
R ∈ Vd for each d = 1, . . . , D such that

A =
R∑

r=1
v1

r ⊗ · · · ⊗ vD
r . (3.4)

In this equivalent problem, each rank-1 tensor Ar in the expression A =
∑R

r=1 Ar

is factorised as a tensor product. Some texts define the polyadic decomposition
as the factors vd

r , but for our definition, the rank-1 terms Ar need not be
presented in factorised form.

The characterisation (3.4) is more ambiguous than Definition 3.6 because, if
(3.4) holds and some set of scalars {λr,d}R,D

r=d=1 satisfies
∏D

d=1 λr,d = 1 for all r,
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then the following is an alternative decomposition of A:

A =
R∑

r=1

(
λr,1v

1
r

)
⊗ · · · ⊗

(
λr,Dv

D
1
)
.

That is, the parametrisation of a rank-1 tensor as a tensor product is unique up
to a choice of D − 1 scalars.

Applying Definition 3.6 to matrices, a polyadic decomposition of A ∈ Kn1×n2

is a set of rank-1 matrices u1v
T
1 , . . . , uRv

T
R such that A =

∑R
r=1 urv

T
r =

[u1 · · · uR] [v1 · · · vR]T . The minimal R such that this equality can be satisfied
is the rank of A (as defined in linear algebra). Thus, tensor rank generalises
matrix rank.

The consistency between matrix and tensor rank prompts the question: does
every tensor in Kn×···×n of order D have rank at most n? For matrices, this
is true. However, by the following counting argument, this cannot be true for
sufficiently large tensors of higher order. By definition, the set of tensors of rank
at most R is contained in the image of the polynomial map

F : (Kn)RD → Kn×···×n

(v1
1 , v

2
1 , . . . , v

D
R ) 7→

R∑
r=1

v1
r ⊗ · · · ⊗ vD

r .

The image of F cannot contain a set of higher dimension than its domain1,
which has dimension nRD. For example, let R = n and D = 3. Then the set of
rank-n tensors cannot contain a space of dimension more than 3n2. Thus, for
n > 3, it cannot contain all of Kn×n×n.

An early result on the rank of general tensors is the following.

Theorem 3.7 (Strassen–Lickteig, Theorem 3.1.4.3 in [Lan12]). All tensors in
Cn×n×n outside of some set of measure zero have rank

⌈
n3

3n−2

⌉
, except if n = 3.

In that case, the count should be increased by 1.

3.3.2 Symmetric tensor decomposition

Some tensors found in applications obey certain symmetries. In this case, one
is usually interested in decompositions that preserve these symmetries. Some

1For sharper estimates of the dimension of the image of F , see Section 3.4, in particular
the definition of expected dimension, or [Lan12, chapter 3].
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basic definitions relating to symmetric tensors are presented below. A more
extensive introduction was provided by Comon et al. [Com+08].

Definition 3.8. For a finite set S ⊆ N, the Dth symmetric group S(S) is the
group of all permutations of S. The permutation swapping i and j is written as
σi↔j . If V1, . . . ,VD are vector spaces, every σ ∈ S({1, . . . , D}) corresponds to
a linear map defined by

σ : V1 ⊗ · · · ⊗ VD → Vσ(1) ⊗ · · · ⊗ Vσ(D)

v1 ⊗ · · · ⊗ vD → vσ(1) ⊗ · · · ⊗ vσ(D).

If we interpret V1⊗· · ·⊗VD as Kn1×···×nD , then for any array A with coordinates
ai1,...,iD

, its permutation σ(A) has coordinates aσ(i1),...,σ(iD). For example, if
D = 2, we get S({1, 2}) = {Id, σ1↔2}. The associated permutations on Kn1×n2

are Id : A 7→ A and σ1↔2 : A 7→ AT .

Definition 3.9. Let H ̸= {Id} be a subgroup of S({1, . . . , D}) that is generated
by pairwise swaps σi↔j . A tensor A ∈ V1 ⊗ · · · ⊗ VD is partially symmetric
or symmetric relative to H if σ(A) = A for all σ ∈ H. If σ(A) = A for all
σ ∈ S({1, . . . , D}), then A is symmetric.

Note that a tensor in V1⊗· · ·⊗VD can only be invariant under σi↔j if Vi = Vj .
Therefore, the only tensor spaces in which symmetric tensors exist are of the
form V⊗ · · ·⊗V, abbreviated as V⊗D. Likewise, the tensor product of D copies
of v ∈ V will be written as v⊗D.

A basic property is the following:

Proposition 3.10 (see e.g. [Com+08]). Given a vector space V, the set of
symmetric tensors Sym(V, D) ⊆ VD is a linear space generated by symmetric
rank-1 tensors, i.e., Sym(V, D) = span

{
v⊗D

∣∣ v ∈ V
}
.

The above property ensures that, if we want to decompose a symmetric tensor
A as a sum of rank-1 tensors, i.e., A =

∑R
r=1 Ar, we can impose that all Ar are

symmetric. This kind of polyadic decomposition is called a Waring decomposition.
If we factor the Ar, this gives

A =
R∑

r=1
λrv

⊗D
r

where λr ∈ K and vr ∈ V.

Partially symmetric tensors have an analogous characterisation, but it is more
complicated notationally. Let H be the symmetry group acting on the tensor
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space V1 ⊗ · · · ⊗ VD, as in Definition 3.9. Consider the graph G with nodes
{1, . . . , D} where i and j are connected if σi↔j ∈ H. Since H is generated
by pairwise swaps, G is a union of cliques2 C1, . . . , CK . We can relabel the
nodes {1, . . . , D} such that C1 consists of nodes 1 to d1 for some d1, the second
clique consists of d2 nodes starting at node d1 + 1, and so on. This relabelling
corresponds to a permutation π of the tensor space V1 ⊗ · · · ⊗ VD. If a tensor
A = w1 ⊗ · · · ⊗wD is invariant under H, then (up to relabelling), A must be of
the form λv⊗1

1 ⊗ · · · ⊗ v⊗dK

K for some scalar λ and vectors w1, . . . , vK .

By the preceding argument, the space of partially symmetric tensors is the tensor
product of spaces of symmetric tensors. Since symmetric tensors are generated
by symmetric rank-1 tensors, partially symmetric tensors are generated by their
tensor products. In other words, if A is partially symmetric, we may write it as

A =
R∑

r=1
λr(vr

1)⊗1 ⊗ · · · ⊗ (vr
K)⊗dK

for some choice of R, scalars λr, and vectors vr
k with k = 1, . . . ,K and r =

1, . . . , R. Such a decomposition is called a partially symmetric decomposition.

3.3.3 Tucker decomposition

The Tucker decomposition [Tuc66] is a commonly used model that can be
computed by a combination of flattenings and matrix decompositions. Put
simply, a Tucker decomposition of a tensor A is a choice of basis together with
the corresponding coordinates of A.

Definition 3.11. Let A ∈ V1 ⊗ · · · ⊗ VD. For d = 1, . . . , D, let Ud =
{u1

d, . . . , u
rd

d } be a set of vectors spanning Vd, and let C ∈ Kr1×···×rD be an
array of coordinates of A with respect to U1, . . . , UD, that is,

A =
r1,...,rD∑

i1,...,iD=1
Ci1,...,iD

(ui1
D ⊗ · · · ⊗ u

iD

D ).

Then the tuple (C , U1, . . . , UD) is a Tucker decomposition of A.

If we identify each Ud = {u1
d, . . . , u

rd

d } with the application of coordinates,
i.e., the map (α1, . . . , αrd

) 7→
∑rd

i=1 αiu
i
d, then we may write the Tucker

decomposition as A = (U1⊗· · ·⊗UD)C where (U1⊗· · ·⊗UD) is the multilinear
multiplication operator (Section 3.2.2). In the numerical literature, this is also
written as C ×1 U1 · · · ×D UD [KB09, §4].

2Recall that a clique is a graph in which all nodes are connected to each other.



DECOMPOSITIONS 41

It is clear from the definition that the Tucker decomposition depends on an
explicit choice of basis. Hence, the Tucker decomposition of a given tensor can
never be unique. For each d = 1, . . . , D, let Gd ∈ GL(Vd) be a change of basis.
If A = (U1 ⊗ · · · ⊗ UD)C , then

A = (U1G1︸ ︷︷ ︸
=:Ũ1

⊗ · · · ⊗ UDGD︸ ︷︷ ︸
ŨD

)
(
(G−1

1 ⊗ · · · ⊗G
−1
D )C

)︸ ︷︷ ︸
=:̃C

which yields the alternative Tucker decomposition (C̃ , Ũ1, . . . , ŨD) of A.

If U1, . . . , UD are all linearly independent sets, the coordinates C are uniquely
determined given A, and the only indeterminacy of the Tucker decomposition
(with fixed cardinalities of U1, . . . , UD) is a choice of basis.

To define the notion of rank associated with the Tucker decomposition, we use
the following lemma.

Lemma 3.12. For d = 1, . . . , D, let Vd be a vector space. Let U1 and U2 be
linear subspaces of V1 and V2, respectively. Then

T := (U1 ⊗ V2 ⊗ · · · ⊗ VD) ∩ (V1 ⊗ U2 ⊗ · · · ⊗ VD) = U1 ⊗ U2 ⊗ · · · ⊗ VD

and likewise for subspaces Ui of other factors Vi with 1 ⩽ i ⩽ D.

Proof. It is obvious that U1 ⊗U2 ⊗ · · · ⊗VD ⊆ T. For the reverse inclusion, let
A ∈ T be a tensor decomposed as A =

∑R
r=1 v

r
1 ⊗ ur

2 ⊗ vr
3 ⊗ · · · ⊗ vr

D, where,
for each r, vr

d ∈ Vd for all d and ur
2 ∈ U2. If PU1 is the projection from V1

onto U1, then A = (PU1 ⊗ Id ⊗ · · · ⊗ Id)A by assumption. By substituting
the decomposition of A into the right-hand side of this identity, we see that
A =

∑R
r=1 u

r
1 ⊗ ur

2 ⊗ vr
3 ⊗ · · · ⊗ vr

D for some vectors ur
1 ∈ U1. This proves the

first statement. The other statement can be shown analogously by permuting
the factors of the tensor product.

This lemma ensures that the following is well-defined.

Definition 3.13. Let A ∈ V1 ⊗ · · · ⊗VD be a tensor. If the smallest subspaces
Ud ⊆ Vd such that A ∈ U1⊗· · ·⊗UD are Ud = Vd for all d, then the multilinear
rank of A is mlrank A := (dimV1, . . . ,dimVD). Equivalently, the multilinear
rank of a tensor A is the tuple of minimal integers (r1, . . . , rd) such that A has
a Tucker decomposition (C , U1, . . . , UD) with #Ud = rd for all d.

This definition can be interpreted as follows. Let A =
∑R

r=1 v
1
r ⊗ · · · ⊗ vD

r

be any tensor. For each d ∈ {1, . . . , D}, define Vd := span{vd
1 , . . . , v

d
R}. By

Definition 3.3, A ∈ V1 ⊗ · · · ⊗ VD, so that the multilinear rank of A is
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(componentwise) at most (dimV1, . . . ,dimVD). Conversely, if a given tensor A
has multilinear rank (m1, . . . ,mD), then there exist linear spaces V1, . . . ,VD of
dimension m1, . . . ,mD, respectively, such that A ∈ V1 ⊗ · · · ⊗VD. Thus, A can
be expressed as A =

∑R
r=1 v

1
r ⊗ · · · ⊗ vD

r with dim span{vd
1 , . . . , v

d
R} ⩽ md for

all d.

3.3.4 Block term decomposition

In some applications, one is interested in a family of decompositions that
generalise the polyadic decomposition. These are defined as follows.

Definition 3.14 ([DL08]). Let A ∈ V1 ⊗ · · · ⊗ VD be a tensor and choose
positive integers R and lrd for all d = 1, . . . , D and r = 1, . . . , R. A block term
decomposition (BTD) of ranks (lrd)D,R

d=r=1 is a set of tensors {A1, . . . ,AR} such
that A =

∑R
r=1 Ar and Ar has multilinear rank (lr1, . . . , lrD) for each r.

Similarly to the polyadic decomposition, it may be useful to find a Tucker
decomposition of the terms Ar that reveals their multilinear rank. This gives
the following analogue of (3.4) for the BTD:

A =
R∑

r=1
(Ur

1 ⊗ · · · ⊗ Ur
D)Cr

where Ur
d ∈ Rdim Vd×lr

d and Cr ∈ Klr
1×···×lr

D . In fact, this is the original definition
of the BTD. Note that factorising each term as a Tucker decomposition
introduces redundancy, since the Tucker decomposition is never unique.

A common special case of the BTD of third-order tensors is the so-called
(lr, lr, 1)-BTD, in which lr1 = lr2 and lr3 = 1 for all r.

3.4 Geometry of low-rank tensors

3.4.1 Basic tensor manifolds

The spaces of general, symmetric, and partially symmetric tensors of rank at
most 1 are classical objects in algebraic geometry, known as the Segre, Veronese,
and Segre–Veronese varieties, respectively [Har95, Chapter 2][Lan12, Chapter
4]. These are known to be smooth in the sense of projective algebraic geometry,
but they are rarely studied from a differential geometric point of view. Recently,
however, Lars Swijsen studied the Riemannian geometry of real rank-1 tensors
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in his doctoral dissertation [Swi22]. From here on, we will only work in real
tensor spaces as well. A rudimentary result in said dissertation is the following.

Proposition 3.15. The set

S(V1 ⊗ · · · ⊗ VD) := {A ∈ V1 ⊗ · · · ⊗ VD | rank A = 1}

is an embedded submanifold of V1⊗· · ·⊗VD of dimension 1+
∑D

d=1 dim(Vd−1),
called the Segre manifold. We will simply refer to it as S if the V1, . . . ,VD are
clear from the context.

This was shown using the fact that

ϕ : R+
0 × Sn1−1 × · · · × SnD−1 → Rn1×···×nD

(λ, v1, . . . , vD) 7→ λv1 ⊗ · · · ⊗ vD

is a smooth immersion whose image is S (in coordinates) and that at any point
in its domain, ϕ is locally a homeomorphism onto an open subset of S. This
argument generalises to (partially) symmetric tensors and gives the following
result.

Proposition 3.16. The partially symmetric tensors of rank 1, i.e.,

SV(V⊗d1
1 ⊗ · · ·⊗VdK

K ) :=
{
λv⊗d1

1 ⊗ · · · ⊗ v⊗dK

k

∣∣∣ λ ∈ R, and ∀k : vk ∈ Vk

}
,

is an embedded submanifold of V⊗d1
1 ⊗ · · · ⊗ VdK

K , called the Segre–Veronese
manifold. For K = 1, the Veronese manifold is V(V⊗D) := SV(V⊗D).

All three of these manifolds are standard objects in the algebraic geometry of
tensor decompositions [Lan12]. A less classical tensor manifold is the set

Tr1,...,rD
(V1 ⊗ · · · ⊗ VD) := {A ∈ V1 ⊗ · · · ⊗ VD |mlrank A = (r1, . . . , rD)} ,

which we call the Tucker manifold. Basic properties of this space, such as a
parametrisation of the tangent space, were derived by Koch and Lubich [KL10].
Note that if we set (r1, . . . , rD) := (1, . . . , 1), we obtain the Segre manifold.
Note also that Tn1,...,nD

(Rn1×···×nD ) is the set of tensors of full multilinear
rank, also denoted as Rn1×···×nD

⋆ , which is an open subset of Rn1×···×nD . The
set of multilinear rank at most (r1, . . . , rD) is called the subspace variety in
algebraic geometry [Lan12, Definition 3.1.3.4]. In Chapter 4, we generalise
Tucker manifolds to structured Tucker manifolds.
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3.4.2 Join sets

The Segre, Veronese, Segre–Veronese, and Tucker manifolds are the basic objects
from which additive tensor decompositions are derived. The domains of such
decompositions are known as join sets [Lan12, Chapter 5], which are defined as
follows.

Definition 3.17. Suppose that M1, . . . ,MR are subsets of a linear space E .
The addition map is defined as

Σ: M1 × · · · ×MR → E

(p1, . . . , pR) 7→ p1 + · · ·+ pR.

The image of Σ is the join set of M1, . . . ,MR. If M1, . . . ,MR are clear from
the context, we will write the join set as J .

The join set is classically studied for algebraic varieties rather than manifolds. In
this text, all algebraic varieties are affine varieties, i.e., they can be characterised
as the zero set of a system of polynomial equations. Given a subset M of a
linear space, the Zariski closure M is the smallest algebraic variety containing
M. Every algebraic variety has a dense subset which is a smooth manifold
[Sha13]. Conversely, the basic manifolds of tensors with a fixed (additive or
multilinear) rank, i.e., the Segre–Veronese and Tucker manifolds, are dense in
their Zariski closures. More precisely, their Zariski closures are the spaces of
tensors of bounded rank [Lan12]. Thus, in our context, the difference between a
variety and a manifold is a small set of (possibly nonsmooth) points.

If M1 = · · · = MR = M, the Zariski closure of the join set is called the rth
secant variety of M. Such varieties, especially the secants of the Segre and
Veronese manifold, are the main objects of interest in the algebraic geometry
of additive tensor decompositions. An important example is the join set of R
copies of the Segre manifold, i.e.,

Σ(S, . . . ,S) = {A1 + · · ·+ AR | rank Ar = 1 for all r = 1, . . . , R} .

The decomposition of a tensor into R rank-1 tensors is the problem of inverting
Σ on this set. For an overview of the theory of secant varieties and join sets, see
Landsberg’s book [Lan12], from which we have borrowed some terminology.

One of the key relevant properties of the join set is its dimension. The standard
tool for computing this dimension is the following lemma.

Lemma 3.18 (Terracini’s lemma - Lemma 5.4.1.1 in [Lan12]). Let J be the
join set of algebraic varieties M1, . . . ,MR. For all (p1, . . . , pR) in an open and
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dense subset of M1 × · · · ×MR, we have

Tp1+···+pR
J = spanDΣ(p1, . . . , pR) = Tp1M1 + · · ·+ TpR

MR

where TprMr is treated as a linear subspace of the ambient linear space E, for
each r.

It follows from Terracini’s lemma that

dimJ = rankDΣ(p1, . . . , pR) ⩽ dimM1 + · · ·+ dimMR (3.5)

where p1 ∈ M1, . . . , pR ∈ MR are general points. This upper bound is the
dimension of the domain of Σ, and I call it the desired dimension of the join set.
That is, J has the desired dimension if and only if kerDΣ(p1, . . . , pR) = {0} for
general p1, . . . , pR, i.e., if the linear spaces Tp1M1, . . . , TpR

MR do not intersect.

The name desired dimension is inspired by its relevance for the condition
number. We saw in Example 2.15 that the condition number of inverting Σ is
defined precisely under the assumption that DΣ is injective. More precisely, if
DΣ(p1, . . . , pR) is injective at generic points p1, . . . , pR (i.e., J is not defective),
there exists a unique smooth map

Φ: J →M1 × · · · ×MR

p1 + · · ·+ pR 7→ (p1, . . . , pR)

that inverts Σ on a neighbourhood of p1 + · · ·+ pR. We call it the decomposition
map. When we ask the central question in this thesis, i.e., “How sensitively
does the decomposition (p1, . . . , pR) depend on the point p1 + · · ·+ pR?”, we are
referring to the sensitivity of Φ. Thus, for this question to make sense at all, we
want to assume that J has the desired dimension.

If J does not have the desired dimension, I will call it defective. In algebraic
geometry, this means something slightly different. The expected dimension,
denoted as expdimJ , is defined as the minimum of the desired dimension and
the dimension of the ambient linear space E . This is a sharper upper bound on
dimJ than (3.5). Most literature on the algebraic geometry of secant varieties
[Lan12] defines a defective join set as one that does not have the expected
dimension, but we require the desired dimension instead.

It is important not to overstate the implications of nondefectivity: the local
existence of the decomposition map Φ implies that p1 + · · ·+ pR has a locally
unique decomposition (p1, . . . , pR). That is, any alternative decomposition must
be sufficiently far away from (p1, . . . , pR). For example, the join set of 11 copies
of S(R3⊗R3⊗R11) is nondefective. Points in this space generically have 352 716
complex polyadic decompositions, all of which are isolated from each other
[Hau+19].
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Example 3.19 (secants of the two-factor Segre manifold). Let Smn := S(Rm⊗
Rn) denote the set of rank-1 matrices. The join set of R copies of Smn is Rm×n

⩽r ,
i.e., the set of matrices of rank at most r. This algebraic variety has dimension
r(m+ n)− r2 [Lan12], whereas its expected dimension is r(m+ n− 1). Thus,
the secant varieties of Smn are defective for all r > 1. See [Lan12, section 4.6.2]
for a proof that the tangent spaces at any pair p1, p2 ∈ Smn must intersect.

In more algebraic terms, rank-R matrices are defective because of symmetry.
That is, for rank-1 matrices a1b

T
1 , . . . , aRb

T
R, the addition map is given by

Σ(a1b
T
1 , . . . , aRb

T
R) = [a1a2 · · · aR]︸ ︷︷ ︸

A

[b1b2 · · · bR]T︸ ︷︷ ︸
BT

.

For all G ∈ GL(R), we have

Σ(a1b
T
1 , . . . , aRb

T
R) = (AG)(G−1BT )

= Σ((AGe1)(eT
1 G

−1BT ), . . . , (AGeR)(eT
RG

−1BT )) (3.6)

where er is the rth canonical basis vector of RR. Thus, Σ is constant over orbits
of GL(R), which means it is not invertible, not even locally. Hence, the condition
number of inverting Σ in the sense of Chapter 2 is undefined. A generalised
notion of condition that overcomes this barrier is introduced in Chapter 6.

Since the most familiar examples of secant varieties (i.e., low-rank matrices)
are defective, the term expected dimension may seem like a misnomer. Readers
coming from the world of matrices might even expect symmetries akin to those
of (3.6). It turns out that such symmetries are rare for tensors of higher order,
though, which leads to the adage “tensors are normal and matrices are strange
[because of unusual symmetries]”. The following well-known conjecture captures
this more precisely.

Conjecture 3.20 (Abo–Ottaviani–Peterson [AOP08]). The join set of R
copies of the Segre manifold S ⊆ Rn1 ⊗ · · · ⊗RnD has the expected dimension if
(n1, . . . , nD) is none of the following special cases:

• (n1, . . . , nD) = (2, 2n+ 1, 2n+ 1) for some n ∈ N,

• (n1, . . . , nD) = (3, 4, 4),

• (n1, . . . , nD) = (2, 2, n, n) for some n ∈ N,

• nM − 2 ⩾
∏

d̸=M nd −
∑

d̸=M (nd − 1) where 1 ⩽ M ⩽ D and nM =
max{n1, . . . , nD}.
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Through an exhaustive search using computer algebra, it was found that the
only combinations of R,n1, . . . , nD such that dimJ ̸= expdimJ < n1 · · ·nD ⩽
15000 are the exceptions listed above [COV14].

For sufficiently small values of R (i.e., all R such that R dimS ⩽ n1 · · ·nD), the
desired dimension is the expected dimension. Thus, the conjecture implies that
spaces of tensors of sufficiently low rank, usually called subgeneric rank, always
have the desired dimension, with a few exceptions.

Even for manifoldsM1, . . . ,MR whose join set has the desired dimension, there
may still be a subset of exceptional points p1 ∈M1, . . . , pR ∈MR where DΣ
fails to be injective. These points mark the Terracini locus, i.e.,

TL := {p1 + · · ·+ pR | pr ∈Mr for all r and kerDΣ(p1, . . . , pR) ̸= {0}} .

These are the points where the join set “looks defective”. Furthermore, it is the
locus of points where the condition number of decomposition problem diverges
[BV18b]. For recent results on the Terracini locus of specific tensor spaces, see
[BBS20; BC21].

3.5 Applications of tensor decompositions

Tensor decompositions are central to many data analysis models. For an overview,
see the review articles [KB09; PFS16; Sid+17]. I give two examples below.

3.5.1 Mixture models

Symmetric tensor decompositions are sometimes used for the estimation of
several classes of mixture models [Ana+14]. These models are probability
distributions involving an unobserved discrete variable Z and an observed
variable X. The mixture model states that any two samples X1, X2 of X are
conditionally independent given Z, i.e.,

P (X1 = x1, X2 = x2|Z = z) = P (X1 = x1|Z = z)P (X2 = x2|Z = z). (3.7)

One kind of mixture model is the bag-of-words model for topic modelling [JM09,
§20.2]. This is an unsupervised machine learning problem where one is given a
corpus of documents, each about one topic, and the goal is to detect the most
common topics discussed in the corpus, their relative frequencies, and the word
frequencies given the topic. I will revisit the algorithm from [Ana+14], first
mentioned here in Section 1.3, for the estimation of a bag-of-words model.
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In the bag-of-words model, the latent variable Z is the topic, which is always
one of R possible values. The observed variables are the words in a text.
The vocabulary used by a text is a set of cardinality n. Given any topic z,
the assumption (3.7) implies that the probability of any sequence of words
X1, X2, . . . in a text about z is invariant under permutation of the sequence.
The distribution can be characterised by specifying the probabilities p1, . . . , pR

of the R topics and the conditional probabilities µij := P (X = xi|Z = j).

The algorithm of interest for the estimation of these probabilities from data
is based on one-hot encoding. That is, the ith word in the vocabulary (say, in
alphabetical order) is represented as the n-tuple ei ∈ Rn consisting of zeros in
all components, except for the ith component, which is 1.

For each r = 1, . . . , R, the vector µr := [µir]ni=1 encodes the conditional
probabilities of all words in the vocabulary given that the document is on
the rth topic. If X1, X2, X3 are stochastic variables representing any three
words in the same text about an unknown topic, then

E [X1 ⊗X2 ⊗X3] =
R∑

r=1
prµ

⊗3
r (3.8)

under the mixture model assumption [Ana+14].

The left-hand of side of (3.8) can be approximated by computing the empirical
mean of X1 ⊗X2 ⊗X3 over a large corpus of texts. By computing a Waring
decomposition of this mean, one can obtain estimates of the parameters pr and
µr that define the distribution. The tensor in (3.8) usually lives in a space of very
high dimension (i.e, n3) and its rank is usually much less than n. Such tensors
can be decomposed relatively efficiently with a compress-decompose-expand
algorithm [BA98], which we will explore in detail in Chapters 4 and 5.

It is important to note, however, that the empirical mean will only be an
approximation of the true mean, and therefore, the estimated parameters will be
off as well. The accuracy of the decomposition can be estimated in terms of the
condition number, which will be discussed in Chapter 5. If the decomposition
is sensitive to small inaccuracies in the data, the recovered parameters are
essentially uninterpretable.

3.5.2 Blind source separation

Signal separation, or blind source separation, is the process of recovering
independently sourced signals (such as time series) of which only a combination
was measured. More concretely, suppose that R sources emit signal vectors
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s1, . . . , sR and that we have K observers that detect linear combinations of the
signals:

yk =
R∑

r=1
mkrsr + nk, where k = 1, . . . ,K, (3.9)

and nk is a stochastic vector representing measurement noise. The matrix
[mkr]K,R

k=r=1 is called the mixing matrix and its columns are called the mixing
vectors mr. While the task at hand is to recover the signals s1, . . . , sR as a
function of y1, . . . , yK , practical algorithms often estimate the mixing matrix
first [Com94; DLDMV00b; CJ10]. That is, one estimates how the signals are
mixed.

Different assumptions about the signals, noise have led to different reconstruction
algorithms. The quintessential model is independent component analysis, which
assumes that the signals are statistically independent stochastic vectors and
that the noise is Gaussian and independent of the signals. In this case, the
mixing vectors can often be computed through a Waring decomposition of the
cumulant tensor of the mixed signals [Com94].

An algorithm based on a different assumption was introduced by De Lathauwer
[DL11] and has been successful for the detection of epileptic seizure signals
[Hun+14]. This model assumes that the signals s1, . . . , sR consist of samples
of an exponential polynomial at consecutive integer values of the argument.
Recall that an exponential polynomial in a variable t is an expression that is
polynomial in t and all bt where b ∈ C.

Under this assumption and in the absence of noise, the unobserved variables
m1, . . . ,mR and s1, . . . , sR can be obtained by constructing an array Y that is
defined componentwise by Yijk := (yk)i+j−1. It can be shown that Y admits an
(lr, lr, 1)-BTD of the form

Y =
R∑

r=1
Hr ⊗mr,

where mr is as in (3.9) and the rank of Hr depends on the degree of the
exponential polynomial sampled in the rth signal. Moreover, the signals sr can
be read from the first row and last column of Hr.





Chapter 4

Structured block-term
decompositions and Tucker
compression

This chapter consists of the journal article [DBV23a].

N. Dewaele, P. Breiding and N. Vannieuwenhoven. “The condition number
of many tensor decompositions is invariant under Tucker compression”. In:
Numerical Algorithms (June 2023).

The doctoral candidate derived the theoretical results and performed the
experiments. The text was written in collaboration with the coauthors.

Abstract

We characterise the sensitivity of several additive tensor decompositions with
respect to perturbations of the original tensor. These decompositions include
canonical polyadic decompositions, block term decompositions, and sums of
tree tensor networks. Our main result shows that the condition number of all
these decompositions is invariant under Tucker compression. This result can
dramatically speed up the computation of the condition number in practical
applications. We give the example of a 265×371×7 tensor of rank 3 from a food
science application whose condition number was computed in 6.9 milliseconds by
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exploiting our new theorem, representing a speedup of four orders of magnitude
over the previous state of the art.

4.1 Introduction

In numerous applications, one seeks a decomposition that expresses a tensor
A, living in the tensor product of vector spaces V1 ⊗ · · · ⊗ VD, as a sum of R
elementary terms:

A = A1 + · · ·+ AR, (4.1)

where Ar ∈Mr and Mr is a low-dimensional manifold in the space of tensors.
Such a decomposition was called a join decomposition in [BV18b]. We consider
the case where V1, . . . ,VD are Euclidean spaces, so that their tensor product has
a natural inner product [Gre78]. Tensors in this space are known as Cartesian
tensors [Tem60], but they are simply referred to as “tensors” in this chapter. To
simplify notation, we identify V1⊗· · ·⊗VD with D-arrays in Rdim V1×···×dim VD

after choosing orthonormal bases of V1, . . . ,VD.

In this chapter, we study the sensitivity properties of a certain subclass of
join decompositions related to tensors. We call them structured block term
decompositions (SBTD). The formal definition of this class is given in Section 4.2
below. Informally, an SBTD involves manifoldsMr that are defined by imposing
certain (manifold) structures on the core tensor of a Tucker decomposition with
fixed multilinear rank (l1, . . . , lD). Many commonly used decompositions are
SBTDs; for instance,

◦ sums of rank-1 tensors,1 i.e., canonical polyadic decomposition (CPD)
[Hit27],

◦ sums of Tucker decompositions, i.e., block term decomposition (BTD)
[DL08],

◦ sums of tensor train decompositions [Ose11; ERL22], and

◦ sums of hierarchical Tucker decompositions [HK09; Gra10].

These decompositions are sometimes used for data compression (see [ERL22] for
sums of tensor trains) or, in the case of the CPD and BTD, for the identification
of certain model parameters [AB03; Har70; DLDMV00a]. Especially in the
latter case, it is essential to measure the sensitivity of the decomposition relative

1Recall that a rank-1 tensor a1 ⊗ · · · ⊗ aD is naturally represented in coordinates by the
d-array [(a1)i1 · · · (aD)iD

]dim V1,...,dim VD
i1,...,iD=1 , where (aj)i is the ith coordinate of aj .
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to perturbations of the tensor. One way of doing this involves the condition
number, which was analysed for general join decompositions in [BV18b]. One
main result we establish in this chapter is that the condition number of an
SBTD is invariant under Tucker compression.

Recall that a Tucker decomposition [Tuc66] represents A in a tensor product
subspace by expressing it as a multilinear product A = (Q1, . . . , QD) · G where
the matrices Qd ∈ Rnd×md with nd ⩾ md have linearly independent columns
for each d = 1, . . . , D. That is, if G =

∑R
r=1 g

r
1 ⊗ · · · ⊗ gr

D, for some vectors
{gr

d}
D,R
d=1,r=1 then A =

∑R
r=1(Q1g

r
1)⊗ · · · ⊗ (QDg

r
D).

The core tensor G is often much smaller than A, and it gives the coordinates of A
with respect to the tensor product basis Q1⊗· · ·⊗QD. Note that we will switch
freely between two equivalent notations for Tucker decomposition: the first,
(Q1, . . . , QD) · G , is a common notation [SL08] for multilinear multiplication,
while the second, (Q1 ⊗ · · · ⊗QD)G emphasises that a Tucker decomposition
consists of taking a particular linear combination of the tensors in a tensor
product basis Q1⊗· · ·⊗QD. Herein, Q1⊗· · ·⊗QD denotes the tensor product of
matrices, which acts linearly on rank-1 tensors by (Q1, . . . , QD)·(v1⊗· · ·⊗vD) :=
(Q1v1 ⊗ · · · ⊗ QDvD). In coordinates, this matrix is given by the Kronecker
product of Q1, . . . , QD; see [Gre78].

Originally proposed for CPD, Tucker compression [BA98] consists of expressing
a tensor A ∈ Rn1×···×nD in coordinates in the smallest tensor product subspace
in which it lives, in order to speed up the computation of decompositions of the
form (4.1). That is, before computing the CPD, one first computes a Tucker
decomposition, expressing A = (Q1, . . . , QD) · G . Then, one computes the CPD
of the core tensor G . The obtained decomposition can then be extended to a
decomposition of the original tensor A by multilinear multiplication with the
basis (Q1, . . . , QD). Since there are efficient algorithms [DLDMV00a; VVM12]
for computing an approximate Tucker decomposition of A, contrary to the
mostly optimization-based algorithms for computing CPDs, this compress–
decompose–expand approach can often reduce the overall computation time
[BA98]. Another main contribution of this chapter is that the SBTD provides
a general framework for smoothly varying decompositions of the form (4.1) so
that the SBTD of a tensor G corresponds to an SBTD of (Q1, . . . , QD) · G .

The topic of this chapter is to characterise how a decomposition of the form (4.1)
changes if A is corrupted by noise. In order to obtain a robust interpretation of
the elementary terms, it is essential to quantify how sensitive they are to the
perturbations. As explained in [BV18b], under certain mild conditions, A has an
isolated decomposition a = (A1, . . . ,AR) and we can find a local inverse function
Σ−1

a of the addition map Σ : M1 × · · · ×MR → Rn1×···×nD , (A1, . . . ,AR) 7→
A1 + · · ·+ AR. The local sensitivity of the elementary terms Ar can be measured
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by the condition number [Ric66]

κSBTD(A1, . . . ,AR) := lim
δ→0

sup
Ã∈I:

∥∥A−Ã
∥∥⩽δ

∥∥∥Σ−1
a (A)− Σ−1

a (Ã)
∥∥∥∥∥∥A − Ã

∥∥∥ , (4.2)

where I is the set of valid perturbations (more on this below), and ∥·∥ denotes
both the Euclidean norm on the ambient space Rn1×···×nD and the product
Euclidean norm on Rn1×···×nD × · · · × Rn1×···×nD . The condition number
measures perturbations to the summands Ar ∈ Mr, r = 1, . . . , R. It does
not measure how these summands are parametrised, which would introduce a
number of complications.2 Furthermore, a priori, the condition number depends
on both input A and output (A1, . . . ,AR) because it is defined in terms of a
local inverse [BC13]. However, since A depends uniquely on (A1, . . . ,AR) we can
write the condition number as a function of the output only. We have∥∥∥Σ−1

a (A)− Σ−1
a (Ã)

∥∥∥ ⩽ κSBTD(A1, . . . ,AR)
∥∥∥A − Ã

∥∥∥+ o
(∥∥∥A − Ã

∥∥∥) (4.3)

as an asymptotically sharp first-order error bound. Eq. (4.2) requires specifying
the domain I, which means fixing the space in which the perturbations Ã are
allowed to live. There are four increasingly restrictive ways of looking at the
problem:

1. Ã ∈ Rn1×···×nD is arbitrary and the SBTD of Ã is interpreted as the least-
square minimiser argmin(A1,...,AR)∈M1×···×MR

1
2

∥∥∥Ã − (A1 + · · ·+ AR)
∥∥∥2

.

2. Ã has an SBTD.

3. Ã can be Tucker compressed to a core G̃ ∈ Rm1×···×mD and G̃ has an
SBTD.

4. Ã lives in the same tensor subspace as A, i.e., we have A = (Q1, . . . , QD)·G
and Ã = (Q1, . . . , QD) · G̃ , and the cores G and G̃ both have an SBTD.

A priori, one should expect the problem to become easier in the more restrictive
cases in the sense that the condition number decreases. Indeed, the set of allowed
perturbations gets strictly smaller. However, we prove the following surprising
result.

Theorem 4.1. Let A = A1 + · · · + AR be an SBTD. The condition number
κSBTD(A1, . . . ,AR) is the same for all four domains outlined above.

2See [Van17] for how to deal with such complications in the context of the CPD.
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This theorem is implied by Theorem 4.14 and Corollary 4.15 below.

Theorem 4.1 is in stark contrast to some other problems in which the condition
number depends on the domain. For instance, the condition number of the
matrix logarithm for perturbations constrained in the symplectic group was
studied in [ANT19]. It was shown that the ratio between the unconstrained and
constrained condition number can become arbitrarily large.

Our result indicates that computing the SBTDs of A and G are equally difficult
from a numerical point of view. Indeed, condition numbers are connected
to convergence rates of iterative methods [NW06; AMS08]. For instance, the
local convergence rate of the Riemannian Gauss-Newton method applied the
minimisation of ∥Σ(A1, . . .AR)− A∥2 is bounded in terms of the condition
number (4.2) [BV18a]. This suggests that compression, surprisingly, will not
improve the local rate of convergence, even though the search space can be
much smaller. Compression can, nevertheless, reduce the overall computation
time when A is highly compressible [BA98].

A major practical advantage of Theorem 4.1 is that the condition number can
be computed more efficiently by considering A as a point in a tensor product
subspace: It suffices to compute the condition number of the core G . An example
illustrates the above significant computational advantage. Consider a rank-3
tensor of dimensions 265 × 371 × 7, as in the sugar data set of [BA98]. Its
CPD can be compressed to that of a 3 × 3 × 3-tensor. We implemented two
algorithms to compute the condition number in Julia v1.6 [Bez+17]; the one
from [BV18b] and one based on Theorem 4.1. On a system with an Intel Xeon
CPU E5-2697 v3 running on 8 cores and 126GB memory, this took 110 seconds
and 6.9 milliseconds, respectively, which gives a speedup ratio of over 15 000.
If the CPD is already in compressed form, the time can be reduced further to
only 0.089 milliseconds, representing a speedup of more than a million over the
state of the art.

4.1.1 Outline

We introduce the SBTD in Section 4.2. In Section 4.3, we derive the geometric
foundations of structured Tucker decompositions. Section 4.4 gives an algorithm
to compute the condition number and presents special cases and estimates.
Section 4.5 introduces subspace-constrained SBTDs and proves the main result,
Theorem 4.1, which states that the condition number of SBTDs is invariant
under Tucker compression. Section 4.6 contains some numerical experiments
confirming the theoretical results.
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4.1.2 Notation

The only norms used in this chapter are the Euclidean (or Frobenius) norms
for tensors and vectors, all consistently denoted by ∥ · ∥. The manifold of
real n × m matrices of rank m is denoted as Rn×m

⋆ , where n ⩾ m. The n-
dimensional sphere is Sn. The jth column of the identity 1n is e(n)

j . If the
ambient dimension is clear from the context, we also abbreviate ej := e

(n)
j . The

dth unfolding of a tensor A is A(d). For any matrix X and any set of matrices
An, n = 1, . . . , N , and any k = 1, . . . , N +1, we denote X⊗k (A1⊗· · ·⊗AN ) :=
A1 ⊗ · · · ⊗Ak−1 ⊗X ⊗Ak ⊗ · · · ⊗AN . For a group G acting on a set M, the
G-orbit of x ∈M is [x]G.

4.2 The structured block term decomposition

In this section, we give a formal definition of the SBTD, the main tensor
decomposition that we study in this chapter. Just as a BTD is a linear
combination of Tucker decompositions, an SBTD is a linear combination of
structured Tucker decompositions. The structure we consider is imposed on the
core tensor of the Tucker decomposition.

Definition 4.2 (Tucker core structure). A smooth submanifoldM⊆ Rl1×···×lD

is a Tucker core structure if every C ∈M satisfies the following:

1. C has multilinear rank equal to (l1, . . . , lD), and

2. (A1, . . . , AD) · C ∈M for all Ad ∈ GL(ld) with d = 1, . . . , D.

Next, we can define the M-structured Tucker decomposition.

Definition 4.3 (Structured Tucker decomposition). Let M⊆ Rl1×···×lD be a
Tucker core structure. AnM-structured Tucker decomposition of A ∈ Rn1×···×nD

is an expression of the form

A = (U1, . . . , UD) · C = (U1 ⊗ · · · ⊗ UD)C

with C ∈M and all Ud ∈ Rnd×ld
⋆ for d = 1, . . . , D.

The first basic result we establish in Section 4.3 below ensures that the results
from [BV18b] can be applied to study the condition number.

Proposition 4.4. The set of all tensors A admitting an M-structured Tucker
decomposition forms a smooth embedded submanifold Mn1,...,nD ⊆ Rn1×···×nD ,
called the M-structured Tucker manifold.



GEOMETRY OF THE STRUCTURED TUCKER MANIFOLD 57

An important subclass of structured Tucker manifolds in applications are
defined by tensor networks in which the graph is a tree [Orús14]. This includes
tensors with a fixed rank Tucker decomposition [Tuc66], fixed-rank tensor train
decomposition [Ose11], and fixed rank hierarchical Tucker decomposition [HK09;
Gra10].

The set of tree tensor networks (i.e., hierarchical Tucker formats) with fixed
ranks is known to form a manifold [UV13]. This manifold is invariant under the
natural action of GL(l1)× · · · ×GL(lD). Since multilinear rank is also invariant
under this action [Lan12], all concise (i.e., multilinear rank equals the dimension
of the ambient space) tree-based tensor networks are valid Tucker core structures.
This includes all aforementioned Tucker, tensor trains, and hierarchical Tucker
decompositions in Rl1×···×lD of multilinear rank (l1, . . . , lD). In particular, the
case where (l1, . . . , lD) = (1, . . . , 1) is the set of rank-1 tensors.

We will be interested in additive decompositions whose elementary terms lie
in structured Tucker manifolds, called structured block term decompositions
(SBTDs).

Definition 4.5 (Structured block term decomposition). An SBTD of the tensor
A ∈ Rn1×···×nD associated with theMr-structured Tucker manifoldsMn1,...,nD

r

is a decomposition of the form A = A1 + · · · + AR with Ar ∈ Mn1,...,nD
r for

r = 1, . . . , R.

Any sum mixing rank-1 tensors, Tucker decompositions, tensor trains
decompositions, and hierarchical Tucker decompositions is thus an SBTD.

4.3 Geometry of the structured Tucker manifold

The condition number of join decompositions from [BV18b] requires that
the summands in (4.1) live on manifolds. Therefore, we first derive the
geometric properties of the manifolds involved in the decomposition. We prove
Proposition 4.4, which shows that Mn1,...,nD in Definition 4.3 is indeed a
manifold. We also derive an expression for its tangent space. The proofs of these
statements are standard computations in differential geometry, similar to those
of [UV13].

The following result establishes the differential structure of our manifolds.

Proposition 4.6. LetM be a Tucker core structure as in Definition 4.2. Define
the manifolds

M̃ :=M× Rn1×l1
⋆ × · · · × RnD×lD

⋆ and G := GL(l1)× · · · ×GL(lD)
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and the group action

θ : G × M̃ → M̃

((A1, . . . , AD), (C , U1, . . . , UD)) 7→
((
A−1

1 , . . . , A−1
D

)
· C , U1A1, . . . , UDAD

)
.

Then M̃/G is a quotient manifold with a unique smooth structure so that the
quotient map [·]G : M̃ → M̃/G is a smooth submersion.

Proof. By [Lee13, Theorem 21.10], we only need to verify that the action is
smooth, free (i.e., it fixes the identity), and proper. The first two properties
are straightforward to check. To show that it is proper, consider the sequences
{xn}n∈N → x in M̃ and {an}n∈N in G where {θ(an, xn)}n∈N converges in M̃.
By [Lee13, Proposition 21.5], θ is proper if {an}n∈N converges in G. Consider
the map f : M̃ × M̃ → G taking

(C , U1, . . . , UD), (Ĉ , Û1, . . . , ÛD) 7→ (U†
1 Û1, . . . , U

†
DÛD),

where U†
d = (UT

d Ud)−1UT
d is the Moore-Penrose inverse. Note f(xn, θ(an, xn)) =

an. Furthermore, f is continuous by the continuity of the Moore-Penrose inverse.
Since {(xn, θ(an, xn))}n∈N converges, so does {f(xn, θ(an, xn))}n∈N = {an}n∈N.

The tangent space to this quotient manifold is derived next.

Proposition 4.7. Take the manifold M̃/G as in Proposition 4.6 and consider
a point x = (C , U1, . . . , UD) ∈ M̃. Complete each Ud to a basis [Ud U⊥

d ] of
Rnd . Then

T[x]G (M̃/G) ∼=
{(

Ċ , U⊥
1 B1, . . . , U

⊥
DBD

)
| Ċ ∈ TCM, Bd ∈ R(nd−ld)×ld

}
.

Proof. Define the fibre F of all x′ equivalent to x:

Fx =
{(

(A1, . . . , AD) · C , U1A
−1
1 , . . . , UDA

−1
D

)
| Ad ∈ GL(ld), d = 1, . . . , D

}
.

This allows us to define the vertical space as the tangent space to F at x:

Vx =


 D∑

d=1

Ȧd ⊗d

⊗
d′ ̸=d

1ld′

 C , −U1Ȧ1, . . . ,−UDȦD

∣∣∣∣∣∣Ȧd ∈ Rld×ld

 .

(4.4)
In this expression, we used TAd

GL(ld) ∼= Rld×ld [Lee13] for each d = 1, . . . , D.
Now define the horizontal space as

Hx :=
{(

Ċ , U⊥
1 B1, . . . , U

⊥
d Bd

)∣∣∣Ċ ∈ TCM, Bd ∈ R(nd−ld)×ld

}
.
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We will show that Vx ⊕ Hx = TxM̃. First, we verify that the intersection is
trivial. Take ξ ∈ Vx, parametrised as in (4.4). If also ξ ∈ Hx, by construction
of U⊥

d , it must hold that all Ȧd in the parametrisation of ξ are zero and hence
ξ = 0.

Next, we show that the sum is TxM̃. We know that M is invariant under
the action of GL(l1) × · · · × GL(lD). Therefore, for any Ȧd ∈ Rld×ld for d =
1, . . . , D, there exist curves over M of the form γ(t) = (A1(t), . . . , AD(t)) · C
with Ad(0) = 1ld

and d
dt |t=0Ad(t) = Ȧd. Hence, all tensors of the form

γ′(0) =
D∑

d=1

Ȧd ⊗d

⊗
d′ ̸=d

1ld′

 C with Ȧd ∈ Rld×ld , d = 1, . . . , D

are tangent to M at C . Because of this, it is easy to check that

Vx ⊕Hx = TCM× Rn1×l1 × · · · × RnD×lD = TxM̃.

By the general theory of quotient manifolds, this establishes Hx
∼= T[x]G

(
M̃/G

)
,

where the isomorphism is the unique horizontal lift [AMS08, Section 3.5.8].

We have established that Tucker decompositions with a structured core form a
smooth manifold. By definition, a point on an M-structured Tucker manifold
corresponds to a Tucker decomposition that is unique up to basis transform.
We now have all the tools we need to show that Mn1,...,nD is a manifold. We
do this next.

Proposition 4.8. Let M̃/G be as in Proposition 4.6 and let Mn1,...,nD be
the M-structured Tucker manifold. Then Mn1,...,nD is a smooth embedded
submanifold of Rn1×···×nD and the following is a diffeomorphism:

Φ : M̃/G →Mn1,...,nD

[(C , U1, . . . , UD)]G 7→ (U1, . . . , UD) · C .

Moreover, the tangent space to Mn1,...,nD at (U1, . . . , UD) · C is generated by all
tensors

(U1, . . . , UD) · Ċ +
D∑

d=1

U̇d ⊗d

⊗
d′ ̸=d

Ud′

 C (4.5)

with Ċ ∈ TCM and UT
d U̇d = 0ld×ld

for all d = 1, . . . , D.

Proof. By [Lee13, Proposition 5.2], the first claim holds if Φ is both a
homeomorphism and a smooth immersion. First, we show that it is a
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homeomorphism. Note that Φ is a bijection because Mn1,...,nD is precisely
the set of all tensors with a Tucker decomposition where the core is inM. Since
Φ is induced by a polynomial map, it is also continuous. To show that Φ−1 is
continuous, consider the maps

Vd :Mn1,...,nD → Gr(nd, ld)

(U1, . . . , UD) · C 7→ [Ud]GL(ld)

where Gr(nd, ld) ∼= Rnd×ld
⋆ /GL(ld) is the Grassmannian of ld-dimensional linear

spaces in Rnd [AMS08]. That is, Vd(X ) is the column span of its dth flattening
X(d).

We will demonstrate continuity of Vd at any X ∈ Mn1,...,nD by showing that
every open neighbourhood V of Vd(X ) contains the image of a neighbourhood
of X [Mun14, Theorem 18.1]. By the definition of the quotient topology, we can
write V = [U ]GL(ld) for some open neighbourhood U ⊆ Rnd×ld

⋆ of Ud, where Ud

is any representative of Vd(X ). Furthermore, for some ball Bε(Ud) of radius ε
centred at Ud, we have [Bε(Ud)]GL(ld) ⊆ [U ]GL(ld) = V .

Now we exploit the liberty of choosing the representative Ud. Observe that
Vd(X ) is the span of ld columns of X(d). In other words, there exists a column
selection operator Pd ∈ R(

∏
d′ ̸=d

nd′ )×ld , so that Vd(X ) = [X(d)Pd]GL(ld). By the
semicontinuity of matrix rank, there exists 0 < δ < ε so that any perturbation to
X of norm less than δ does not change the rank of X(d) or X(d)Pd. Hence, Vd(X̃ ) =
[X̃(d)Pd]GL(ld) for any X̃ in a ball Bδ(X ) of radius δ. Because

∥∥X̃(d)Pd − X(d)Pd

∥∥ <
δ < ε, we have Vd(Bδ(X )) ⊆ [Bε(X(d)Pd)]GL(ld), which proves continuity of Vd.

For any X ∈Mn1,...,nD , let Vd(X ) = [Ud]GL(ld) for each d. It can be verified that
the following is independent of the representatives Ud:

Ψ(X ) := [((U†
1 , . . . , U

†
D) · X , U1, . . . , UD)]G .

The right-hand side is the Tucker decomposition of X , which is unique up to
the action of G . Hence, Ψ = Φ−1. This shows that Φ−1 is the composition
of continuous maps: Vd for each d, the Moore-Penrose inverse, multilinear
multiplication, and the canonical projection map. Hence, Φ−1 is continuous.

Next, we show that Φ is an immersion, i.e., that its derivative maps a basis to
a basis, in which case TXMn1,...,nD is the image of dΦ. Fix a basis B0 of TCM
and, for each d = 1, . . . , D, a basis Bd of all U̇d ∈ Rnd×ld so that UT

d U̇d = 0.
By Proposition 4.7, the tangent space of M̃/G can be considered as a product
space generated by the canonical product basis derived from B0, . . . ,BD.
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Applying dΦ to this basis gives dΦ(T[(U1,...,UD)·C ]G (M̃/G)) = T0∪· · ·∪TD where

T0 :=
{

(U1, . . . , UD) · Ċ | Ċ ∈ B0
}

and

Td :=
{(
U1, . . . , Ud−1, U̇d, Ud+1, . . . , UD

)
· C | U̇d ∈ Bd

}
for d = 1, . . . , D.

Note that the sets Ti and Tj with i ̸= j are pairwise orthogonal due to the
constraint on U̇d. Since (U1 ⊗ · · · ⊗ UD) has full rank and B0 is a basis, T0 is
linearly independent. The tangents in the set Td with d ⩾ 1 are tensors whose
dth unfolding is

U̇dC(d)(U1 ⊗ · · · ⊗ Ud−1 ⊗ Ud+1 ⊗ · · · ⊗ UD)T . (4.6)

Recall from Definition 4.3 that C(d) and all UT
i have full row rank. For a set of

linearly independent matrices U̇d, all matrices (4.6) are linearly independent.
This shows that Φ is an immersion. By [Lee13, Proposition 5.2], Mn1,...,nD is a
manifold and Φ is a diffeomorphism. By [Lee13, Theorem 4.14] TXMn1,...,nD is
the image of dΦ.

Note that Proposition 4.4 is a corollary of the previous statement.

4.4 Computing the condition number

Having shown that the structured Tucker decompositions form a manifold, we
can investigate the condition number of the associated SBTD using the tools
from [BV18b]. For this, we first derive an orthonormal basis of the structured
Tucker manifold, so that the condition number can be computed with efficient
algorithms from linear algebra using (4.8) below. We present some examples, as
well as useful estimates of the condition number of SBTDs.

4.4.1 A direct algorithm

Let Mn1,...,nD

1 , . . . ,Mn1,...,nD

R be structured Tucker manifolds, and recall the
addition map

Σ :Mn1,...,nD

1 × · · · ×Mn1,...,nD

R → Rn1×···×nD , (A1, . . . ,AR) 7→ A1 + · · ·+ AR

from the introduction. Computing an SBTD translates to finding a decom-
position (A1, . . . ,AR) so that Σ(A1, . . . ,AR) = A. The condition number
κSBTD(A1, . . . ,AR) from (4.2) is computed as follows [BV18b]. For r = 1, . . . , R,
compute orthonormal bases of TArMn1,...,nD

r , the tangent space to Mn1,...,nD
r
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at Ar. The basis vectors are the columns of matrices Tr. Then, the so-called
Terracini matrix is constructed as

TA1,...,AR
:=
[
T1 . . . TR

]
. (4.7)

The condition number satisfies

κSBTD(A1, . . . ,AR) = 1
σmin(TA1,...,AR

) , (4.8)

where σmin(A) = σmin{m,n}(A) denotes the smallest singular value of A ∈ Rm×n.
Thus, the computation of κSBTD requires orthonormal bases of the tangent spaces
to the structured Tucker manifolds. We explain this in the next proposition.

Recall that the compact higher-order singular value decomposition (HOSVD)
[Tuc66; DLDMV00a] is an orthogonal Tucker decomposition X = (U1, . . . , UD)·C
with Ud ∈ Rnd×ld a basis of left singular vectors of X(d) corresponding to the
nonzero singular values. In particular, UT

d Ud = 1ld
and the columns of Ud span

the column span of X(d). The core tensor C is the orthogonal projection of X
onto the orthonormal basis U1 ⊗ · · · ⊗ UD: C = (UT

1 , . . . , U
T
D) · X . With this

terminology in place, we can state the result.

Proposition 4.9. Let Mn1,...,nD ⊆ Rn1×···×nD be the M-structured Tucker
manifold with Tucker core structure M ⊆ Rl1×···×lD . Assume that we are
given a tensor X ∈Mn1,...,nD expressed in HOSVD format X = (U1, . . . , UD) ·C .
Complete each Ud to an orthonormal basis

[
Ud U⊥

d

]
of Rnd . Let σd

j :=
∥∥eT

j C(d)
∥∥

and ûd
j := (σd

j )−1e
(ld)
j . Let BC be an orthonormal basis of TCM. Then an

orthonormal basis of TXMn1,...,nD is given by

BX := B0
X ∪ · · · ∪BD

X where B0
X :=

{
(U1, . . . , UD) · Ċ | Ċ ∈ BC

}
, (4.9)

Bd
X :=

{
(U1, . . . , Ud−1, U

⊥
d ei(ûd

j )T , Ud+1, . . . , UD) · C
}nd−ld,ld

i,j=1

for d = 1, . . . , D.

Proof. Eq. (4.5) for TXMn1,...,nD suggests a decomposition of the tangent space
of the form

TXMn1,...,nD = T0 ⊕ T1 ⊕ · · · ⊕ TD,

where T0 contains all tangents of the form (U1, . . . , UD) · Ċ and Td with d =
1, . . . , D contains the tangents of the form (U1, . . . , Ud−1, U̇d, Ud+1, . . . , UD) ·
C . Since U̇T

d Ud = 0ld×ld
as in Proposition 4.8, this is a decomposition of

TXMn1,...,nD into pairwise orthogonal spaces.
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First we verify that (4.9) spans TXMn1,...,nD . Since we have an orthonormal
basis of TCM available, we have

T0 = span
{

(U1, . . . , UD) · Ċ | Ċ ∈ BC
}

= (U1 ⊗ · · · ⊗ UD)(TCM).

For the other D subspaces Td, we require all U̇d such that UT
d U̇d = 0, or

equivalently U̇d = U⊥
d B for some B ∈ R(nd−ld)×ld . The e

(nd−ld)
i (ûd

j )T with
i = 1, . . . , nd − ld and j = 1, . . . , ld are a basis of R(nd−ld)×ld , because they are
just a rescaling of the canonical basis e(nd−ld)

i (e(ld)
j )T . Substituting each of these

for B, we get a basis of all allowed U̇d. This parametrises all of Td as

Td = span
{

(U1, . . . , Ud−1, U
⊥
d ei(ûd

j )T , Ud+1, . . . , UD) · C
}i=nd−ld,j=ld

i=j=1 .

Hence, the proposed basis BX generates T0 ⊕ T1 ⊕ · · · ⊕ TD.

We have yet to verify that the proposed basis is orthonormal. We already know
that T0, . . . ,TD are pairwise orthogonal. It thus suffices to show that the bases
we constructed for each of these spaces separately are orthonormal. The basis
for T0 is orthonormal because BC is orthonormal and U1 ⊗ · · · ⊗ UD is an
orthonormal tensor product basis.

For the basis of Td with d ⩾ 1, we use the fact that X is in HOSVD format.
This ensures that an HOSVD of C is (1, . . . ,1) · C . In other words, C(d) has
singular values σd

j as defined above and its corresponding left singular vectors
are ej [DLDMV00a]. Hence, the transpose of its jth right singular vector is
(vd

j )T := (σd
j )−1eT

j C(d) = (ûd
j )T C(d). With this in mind, we calculate the inner

products between the basis vectors of Td:〈
(U1, . . . , Ud−1, U

⊥
d ei(ûd

j )T , Ud+1, . . . , UD) · C , (4.10)

(U1, . . . , Ud−1, U
⊥
d ei′(ûd

j′)T , Ud+1, . . . , UD) · C
〉

= Trace(U⊥
d ei′(ûd

j′)T C(d)C T
(d)û

d
j′eT

i′ (U⊥
d )T )

= ⟨U⊥
d ei, U

⊥
d ei′⟩ ⟨vd

j , v
d
j′⟩.

If i = i′, the right-hand side is the inner product between two right singular
vectors of C(d), which is δjj′ , the Kronecker delta. Otherwise, it is zero due to
the orthogonality of the columns of U⊥

d . This ensures that our basis of Td is
orthogonal, which completes the proof.

Now we can compute the condition number of several decompositions using the
formula in (4.8). Consider the following examples.
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Example 1 (BTD) For a BTD with block terms of multilinear rank (lr1, . . . , lrD),
where r = 1, . . . , R, we can apply Definition 4.3 in which the Tucker core
structure M is the submanifold of tensors in Rlr

1×···×lr
D with multilinear rank

(lr1, . . . , lrD). Since M is an open subset of Rlr
1×···×lr

D , the canonical basis of
Rlr

1×···×lr
D is an orthonormal basis of the tangent space to M at any point. The

algorithm to compute the condition number κBTD is as follows. For each term
Ar in the BTD, compute its compact HOSVD (Ur

1 , . . . , U
r
D) ·Cr. An orthonormal

basis of the tangent space to the Tucker manifold is given by the columns of

TAr :=

 D⊗
d=1

Ur
d

[(
Ur⊥

d ei(ûrj
d )T ⊗d

⊗
d′ ̸=d

Ur
d′

)
Cr

]D,md−lr
d

,lr
d

d,i,j=1

 ,

where ûrj
d and Ur⊥

d are as in Proposition 4.9. The condition number of the BTD
with terms A1, . . . ,AR can then be computed by applying (4.8):

κBTD(A1, . . . ,AR) = σmin(TA1,...,AR
)−1, TA1,...,AR

=
[
TA1 . . . TAR

]
. (4.11)

Example 2 (CPD) This case was studied in [BV18b]. By applying the Tucker
core structureM := R\{0} to Definition 4.3, we get the Segre manifold of rank-1
tensors. If Ar = λur

1 ⊗ · · · ⊗ ur
D is a rank-1 tensor with ∥u1∥ = · · · = ∥uD∥ = 1,

Proposition 4.9 gives the following familiar basis:

TAr
:=
[
ur

1 ⊗ · · · ⊗ ur
D

[
ur

1 ⊗ · · · ⊗ ur
d−1 ⊗ Ur⊥

d ⊗ ur
d+1 ⊗ · · · ⊗ ur

D

]D
d=1

]
,

where Ur⊥
d is an orthonormal basis for the complement of ur

d for each d. Note
that this is equivalent to the previous example with all lrd = 1. Hence, the
condition number κCPD can be computed in a similar fashion as for the BTD.

4.4.2 Examples of well and ill-conditioned SBTDs

In this subsection, we present some qualitative properties that determine the
condition number of the SBTD. As a general rule, the tensor subspace in which
the summands live already gives some information about the condition number.
For instance, one instance where the condition number is perfect is when the
subspaces Ur

d in the Tucker decompositions are pairwise orthogonal. This can
be considered as the SBTD equivalent of an orthogonally decomposable (odeco)
tensor [ZG01]. In such cases, tangent spaces are pairwise orthogonal, so that
the following result holds.

Proposition 4.10. Suppose A1+· · ·+AR is an SBTD with Ar = (Ur
1 , . . . , U

r
D)·Cr

in HOSVD form for r = 1, . . . , R. Assume that (Ur1
d )TUr2

d = 0 for each d and
each r1 ̸= r2. Then κSBTD(A1, . . . ,Ar) = 1.
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Proof. The columns of the Terracini matrix can be partitioned into orthonormal
bases of subspaces of span{

⊗D
d=1 U

r
d} and span{Ur⊥

d ⊗d

⊗
d′ ̸=d U

r
d′} for all

r = 1, . . . , R and for all d = 1, . . . , D. By assumption, these spaces are all
pairwise orthogonal. Since the bases are orthonormal, all columns of the Terracini
matrix are orthonormal.

The fact that this result does not depend on the cores Cr may be surprising if the
problem is not considered geometrically. Cr may be arbitrarily close to having
a multilinear rank lower than the specified (lr1, . . . , lrD) without it affecting
the condition number. Despite this, summands which are close to being low
multilinear rank are a notorious obstacle in practical algorithms to compute the
BTD, the other being correlations between the terms [NDLK08]. Note that the
latter is essentially what the condition number measures. For tensors of lower
multilinear rank than (lr1, . . . , lrD), there are more ways to parametrise it than is
accounted for by the usual symmetries. For instance, for a BTD with multilinear
ranks (lr, lr, 1), the Jacobian of the residual A −

∑R
r=1 Ar with respect to the

parameters becomes singular at such points [SVBDL13]. The ALS algorithm
for a general block term decomposition requires solving a system which also
becomes singular at the boundary [DLN08].

However, if one studies changes to the points Ar ∈Mr and abstracts away how
they are parametrised, summands close to tensors of lower multilinear rank
are not an issue. Hence, it is still reasonable to expect the condition number
to be 1 even near the boundary. This suggests that Riemannian optimisation
algorithms to compute the BTD could have a significant advantage in these
cases, as the convergence rate tends to be related to the condition number. This
is analogous to the case of the CPD, where [BV18b] showed experimentally
and theoretically that classic flat optimisation methods perform worse if the
CPD contains summands of small norm—the analogous situation to a lower
multilinear rank in M-structured Tucker decompositions—while Riemannian
optimisation methods that treat the summands as one geometric object did not
suffer as much.

A geometric understanding of the structured Tucker manifold gives insight into
the condition number. For instance, we have the following result from [BV18b].

Proposition 4.11. Let A =
∑R

r=1 Ar be an SBTD with Ar ∈Mr. If there exists
an injective continuous curve γ : (−ε, ε)→M1 × · · · ×MR with ε > 0 so that
γ(0) = (A1, . . . ,AR) and Σ(γ(t)) = A for all t, then κSBT D(A1, . . . ,AR) =∞.

If such a curve exists, a zero-norm perturbation to A is sufficient to get different
decompositions, so that the assertion follows immediately from (4.2). A trivial
example is the following: let A =

∑R−1
r=1 Ar. We can generate R-term SBTDs of
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the form (A1, . . . , tAR−1, (1− t)AR−1) with t ∈ R. Thus, if a tensor admits an
SBTD with R− 1 summands, some of its SBTDs with more summands have
an infinite condition number.

However, not all SBTDs with more than the minimum number of summands
have an infinite condition number, as the following example illustrates. For a
generic decomposition with symmetric rank-1 summands A1, . . . ,A18 ∈

(
C3)⊗9,

there exist complex symmetric rank-1 tensors B1, . . . ,B17 such that no two of
{A1, . . . ,A18,B1, . . . ,B17} are linearly dependent and

∑18
r=1 αrAr =

∑17
r=1 βrBr

for some choice of the coefficients αr, βr ̸= 0 [AC20]. The condition number of
the decomposition

∑18
r=1 αrAr can be calculated from the Terracini matrix of

(A1, . . . ,A18). This condition number is independent of the choice of αr ̸= 0. For
generic points Ar, the Terracini matrix is not singular, so that the condition
number is generically finite. To illustrate this numerically, we generated 2000
such decompositions with Ar = ar⊗· · ·⊗ar where the ar are sampled uniformly
on the (real) sphere. The geometric mean of κCP D(A1, . . . ,A18) was about 5 ·104.
Thus, the decompositions

∑18
r=1 αrAr have a finite condition number on average,

even though such decompositions are generically not minimal for some choice
of αr.

In general, the condition number of any SBTD can be upper bounded by the
condition number of the corresponding BTD, and for the latter we can get
a useful lower bound for the condition number. We show this in the next
proposition.

Proposition 4.12. Given any SBTD A = A1 + · · ·+ AR, we can also regard it
as a BTD of A. The condition numbers satisfy

κBTD(A1, . . . ,AR) ⩾ κSBTD(A1, . . . ,AR).

If the terms Ar = (Ur
1 , . . . , U

r
D) · Cr are in HOSVD form for r = 1, . . . , R, then

κBTD(A1, . . . ,AR) ⩾ σmin

(
[Ur

1 ⊗ · · · ⊗ Ur
D]Rr=1

)−1
.

Proof. Assume κBTD(A1, . . . ,AR) <∞, since otherwise the statement is trivially
true. For each r = 1, . . . , R, the rth structured Tucker manifold Mn1,...,nD

r of
the SBTD is a subset of the manifold Nn1,...,nD

r of tensors of fixed multilinear
rank. By assumption, the addition map Σ(A1, . . . ,AR) = A1 + · · · + AR of
the BTD has a local inverse function Σ−1

A1,...,AR
, defined on a neighbourhood

I ⊆ Σ(Nn1,...,nD

1 , . . . ,Nn1,...,nD

R ) of A. On the other hand, for any Ã ∈ I ′ :=
I∩Σ(Mn1,...,nD

1 , . . . ,Mn1,...,nD

R ), the (locally unique) SBTD of Ã is Σ−1
A1,...,AR

(Ã).
The condition numbers of the BTD and SBTD are (4.2) applied to Σ−1

A1,...,AR
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and the restriction of Σ−1
A1,...,AR

onto I ′, respectively. Since I ′ ⊆ I, the first
statement follows.

For the second assertion, observe that the columns of [Ur
1 ⊗ · · · ⊗ Ur

D]Rr=1 are
a subset of the columns of the Terracini matrix T of the BTD. By [GVL13,
Theorem 8.1.7], σmin([Ur

1 ⊗ · · · ⊗ Ur
D]Rr=1) ⩾ σmin(T ). The result follows from

(4.8).

The second item in the above proposition shows that

if ker [Ur
1 ⊗ · · · ⊗ Ur

D]Rr=1 ̸= {0}, then κBTD(A1, . . . ,AR) =∞.

Another way to see this is the following: if the spaces intersect, there exist
cores C̃r with r = 1, . . . , R so that

∑R
r=1(Ur

1 ⊗ · · · ⊗ Ur
D)C̃r = 0 and not

all C̃r = 0. Then we can define the curve γ(t) := (γ1(t), . . . , γR(t)), where
γr(t) := (Ur

1 ⊗ · · · ⊗ Ur
D)(Cr + tC̃r), so that the condition number is ∞ by

Proposition 4.11.

This leads to the following observation: if the condition number is finite, the BTD
can be determined purely from subspace information. That is, suppose that for a
given tensor A, only the subspaces Ur

1⊗· · ·⊗Ur
D are computed for each rth block

term, with r = 1, . . . , R. Because the subspaces do not intersect, the cores Cr can
be uniquely recovered from the linear system A =

∑R
r=1(Ur

1 ⊗ · · · ⊗Ur
D)Cr This

is exactly the principle behind the variable projection methods in [OADL18].

It is worth pointing out that the second lower bound from Proposition 4.12 is
not necessarily sharp. To see this, letMn1,...,nD be a structured Tucker manifold
and consider the SBTD A = A1 + A2 with the two summands having Tucker
compressions A1 = (U1, . . . , UD) · C ∈ Mn1,...,nD and A2 = (V1, U2, . . . , UD) ·
C ∈ Mn1,...,nD . We assume that UT

1 V1 = 0 and we define the two curves
γ1(t) := (U1 + tV1, U2, . . . , UD) · C and γ2(t) := ((1 − t)V1, U2, . . . , UD) · C .
Assuming t is small enough, we have that γ1(t), γ2(t) ∈ Mn1,...,nD . As in the
previous example γ1(t)+γ2(t) = A, for all t. Hence, the condition number is also
infinite in this case. Despite this, the estimated lower bound in Proposition 4.12
is σmin([U1 ⊗ U2 ⊗ · · · ⊗ UD, V1 ⊗ U2 ⊗ · · · ⊗ UD]) = 1.

4.5 Invariance of the condition number under
Tucker compression

Next, we discuss the main contribution of this work. Our main result was
informally stated as Theorem 4.1 in the introduction. Here, we present its
formal version, Theorem 4.14. These two theorems show that the condition
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number of computing SBTDs is invariant under Tucker compression. As we
explain in the Section 4.5.2, this can yield a computationally attractive approach
for computing the condition number.

First, we introduce subspace-constrained SBTDs as the formal model of
decompositions resulting from Bro and Andersson’s [BA98] compress-decompose-
expand approach. Subspace-constrained CPDs were also considered in the recent
paper [Pha+21]. The compress-decompose-expand approach assumes that a
tensor that lives in a subspace W1⊗· · ·⊗WD and has an R-term decomposition
also has an R-term decomposition where each summand lives in W1⊗· · ·⊗WD.
This is the case for the CPD [SL08, Proposition 3.1]. The following is a slightly
weaker statement in the case of the SBTD.

Proposition 4.13. Suppose A = (Q1, . . . , QD) · G ∈ Rn1×···×nD where G ∈
Rm1×···×mD and Qd ∈ Rnd×md

⋆ for all d. If A has an SBTD A =
∑R

r=1 Ar with
Ar ∈Mn1,...,nD

r for some Tucker core structures Mr ⊆ Rlr
1×···×lr

D and lrd ⩽ md

for all r and d, then at least one of the following statements holds:

1. G has an SBTD G =
∑R

r=1 Gr with Gr ∈Mm1,...,mD
r .

2. There exist Tucker core structures Nr ⊆ Rℓr
1×···×ℓr

D where ℓr
d ⩽ lrd for

all r and d where at least one inequality is strict and A =
∑R

r=1 Ãr for
Ãr ∈ Nn1,...,nD

r .3

The first statement of Proposition 4.13 implies that A has an SBTD of the form
A =

∑R
r=1(Q1, . . . , QD) · Gr, in which each summand lies in the same subspace

as A, i.e., span(Q1 ⊗ · · · ⊗ QD). The second statement says that the original
SBTD of A can be simplified in the sense that, for at least one r ∈ {1, . . . , R},
the multilinear rank of Ãr is less than that of Ar. By repeatedly applying
Proposition 4.13 to the SBTD that comes out of the second statement, one
eventually reaches an SBTD model where the first statement holds.

Proof of Proposition 4.13. Write the summands in the SBTD as Ar =
(Ur

1 , . . . , U
r
D) · Cr. Then G =

∑R
r=1(Q†

1U
r
1 , . . . , Q

†
DU

r
D) · Cr. Let ℓr

d be the rank
of Q†

dU
r
d . We distinguish between two cases.

If ℓr
d = lrd for all d and r, the first statement holds.

Otherwise, define Nr :=
{

(V r
1 , . . . , V

r
D) · X

∣∣∣X ∈Mr, (V r
d )T ∈ Rlr

d×ℓr
d

⋆

}
. If any

ℓr
d = 0, then Nr = ∅ and we drop the rth summand. The two requirements

in Definition 4.2 of a core structure can be verified respectively by the fact
3For notational convenience, ℓr

d = 0 means that the rth summand is omitted.



INVARIANCE OF THE CONDITION NUMBER UNDER TUCKER COMPRESSION 69

that rank(V r
d X(d)) = rank(V r

d ) whenever rank(X(d)) = lrd and the fact that
(V r

d )T is universally quantified over Rlr
d×ℓr

d
⋆ . If we write Q†

dU
r
d = W r

dV
r

d with
W r

d ∈ Rnd×ℓd
⋆ and (V r

d )T ∈ Rld×ℓd
⋆ , we can expand out A = (Q1, . . . , QD) · G

and the SBTD of G to obtain

A =
R∑

r=1
(Q1W

r
1 , . . . , QDW

r
D) · ((V r

1 , . . . , V
r

D) · Cr)

as desired.

Proposition 4.13 justifies the following method by Bro and Andersson [BA98]
to compute a subspace-constrained SBTD of A.

Compress

A lives in a minimal tensor product subspace of Rn1×···×nD (possibly
trivial). Its minimal Tucker decomposition is A = (Q1, . . . , QD) · G
with core tensor G ∈ Rm1×···×mD and matrices Qd ∈ Rnd×md

⋆ for
d = 1, . . . , D. The decomposition is minimal if G has multilinear rank
equal to (m1, . . . ,mD). It can be computed with a (sequentially)
truncated higher-order singular value decomposition [VVM12;
DLDMV00a].

Decompose

Decompose G as a sum of Mr-structured Tucker tensors, i.e.,

G = G1 + · · ·+ GR with Gr ∈Mm1,...,mD
r . (4.12)

This is performed by an algorithm specific to the core structure (e.g.
[SVBDL13; ERL22]).

Expand

We expand Ar = (Q1U
r
1 , . . . , QDU

r
D) · Cr and find a decomposition

A = A1 + · · ·+ AR of A. In this decomposition the summands are
also Mr-structured Tucker tensors: if we have the Mr-structured
Tucker decomposition Gr = (Ur

1 , . . . , U
r
D) ·Cr such that Ur

d ∈ Rmd×ld
⋆

and Cr is a point of Mr ⊂ Rl1×···×lD satisfying the assumptions of
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Definition 4.3, then for all r and d the matrices QdU
r
d are of full rank.

Hence, Ar = (Q1U
r
1 , . . . , QDU

r
D) ·Cr is a point of theMr-structured

Tucker manifold Mn1,...,nD
r . Summarising, the SBTD (4.12) of the

compressed tensor G can be expanded to an SBTD of A:

A = A1 + · · ·+ AR with Ar ∈Mn1,...,nD
r , r = 1, . . . , R. (4.13)

We call the resulting SBTD of A a subspace-constrained SBTD,
because it is an SBTD all of whose summands are contained in the
same tensor subspace Q1 ⊗ · · · ⊗Qd that A lives in.

This procedure is implemented for several decompositions in software packages
such as Tensorlab [VDDL17]. If the “decompose” step is performed by an
algorithm that iterates over the manifold, the convergence of such an algorithm
would depend on geometric properties ofMm1,...,mD

r andMn1,...,nD
r such as path-

connectedness. For instance, the set of tensors of multilinear rank (l1, . . . , lD) is
path-connected if ld <

∏
d′ ̸=d ld′ for all d = 1, . . . , D [Com+20]. However, issues

related to the convergence of these algorithms are beyond the scope of this
thesis.

Given that a subspace-constrained SBTD can be computed by the foregoing
compress-decompose-expand approach, it is natural to wonder about the
relationship between the condition numbers of A and G . Since G lives in a
much more constrained space, it seems natural to assume that its condition
number could be much lower, similar to the ideas in [ANT19]. In Section 4.5.1
below, we prove the following main result about the condition numbers of
computing the SBTD (4.13) of the original tensor and computing the SBTD
of the compressed Tucker core (4.12). A priori, the condition number of the
decomposition problem (4.12) is bounded above by the condition number of
problem (4.13). The next result shows that they are, in fact, always equal.

Theorem 4.14. Let Mr ⊂ Rlr
1×···×lr

D be Tucker core structures. Assume
that the tensor A ∈ Rn1×···×nD has an orthogonal Tucker decomposition A =
(Q1, . . . , QD)·G with G ∈ Rm1×···×mD and all Qd ∈ Rnd×md having orthonormal
columns. Let the subspace-constrained SBTD be A = A1 + · · ·+ AR with Ar ∈
Mn1,...,nD

r and the SBTD of the Tucker core be G = G1 + · · ·+ GR with Gr ∈
Mm1,...,mD

r , and assume that they are related by Ar = (Q1, . . . , QD) · Gr for
each r = 1, . . . , R. Then,

κSBTD(A1, . . . ,AR) = κSBTD(G1, . . . ,GR).

Before presenting the proof in Section 4.5.1, let us investigate some consequences
of Theorem 4.14. In the subspace-constrained SBTD there are two levels of
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multilinear multiplication. The first level is in Definition 4.3 of the structured
Tucker decompositions. This level is always written with matrices Ur

1 , . . . , U
r
D

that depend on the index of the summand. The second level is the multilinear
multiplication defining the subspace constraint on the tensor A. This level is
denoted with matrices Q1, . . . , QD and it is the same for all summands. This is
summarised in the following diagram:

Ar ∈ Mn1,...,nD
r Gr ∈ Mm1,...,mD

r Cr ∈ Mr.
(Q1⊗···⊗QD) (Ur

1⊗···⊗Ur
D)

It is imperative to note, however, that (Q1⊗ · · ·⊗QD)Mm1,...,mD
r ⊊Mn1,...,nD

r .

When evaluating the sensitivity of a subspace-constrained SBTD (4.13) via the
condition number (4.2), there are at least four natural sets of perturbations I to
consider. Let Ã denote the perturbed tensor. It could have resulted from one of
the following increasingly restrictive perturbations of the subspace-constrained
SBTD A:

1. A was perturbed with no constraints and Ã was approximated by the
closest SBTD Ã ≈ Ã1 + · · ·+ ÃR with Ãr ∈Mn1,...,nD

r ;

2. A was perturbed so Ã has an SBTD Ã = Ã1+· · ·+ÃR with Ãr ∈Mn1,...,nD
r ;

3. A was perturbed so Ã has a subspace-constrained SBTD Ã =
(Q̃1, . . . , Q̃D) · G̃ with core G̃ = G̃1 + · · · + G̃R and G̃r ∈ Mm1,...,mD

r ;
or

4. A was perturbed inside the fixed subspace Q1 ⊗ · · · ⊗ QD so Ã has a
subspace-constrained SBTD Ã = (Q1, . . . , QD) · G̃ with core G̃ = G̃1 +
· · ·+ G̃R and terms in the decomposition G̃r ∈Mm1,...,mD

r .

Since there are 4 domains of perturbations we can consider in (4.2), there
are also 4 associated, a priori distinct, condition numbers. Let us denote the
condition number corresponding to the ith type of perturbation by κi. Then we
have

κ1 ⩾ κ2 = κSBTD(A1, . . . ,AR) ⩾ κ3 ⩾ κ4 = κSBTD(G1, . . . ,GR). (4.14)

However, it was already proven in [BV21, Corollary 5.5] that κ1 = κ2, i.e.,
arbitrary perturbations in combination with a least-squares approximation are
no worse than structured perturbations. Combining this with Theorem 4.14
immediately implies the following more formal restatement of Theorem 4.1.
Corollary 4.15. Suppose that we have SBTDs G = G1 + · · ·+GR ∈ Rm1×···×mD

and A = A1 + · · ·+AR ∈ Rn1×···×nD related by Ar = (Q1 ⊗ · · · ⊗QD) Gr for each
r = 1, . . . , R. If all Qd have orthonormal columns, then (4.14) is an equality.
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4.5.1 Proof of the main result

Proposition 4.9 allows us to prove our main result, Theorem 4.14. Before we do
this, we need the following lemma.

Lemma 4.16. For any set of matrices Ak ∈ Rm×nk and any set of orthogonal
matrices Qk ∈ Rp×p where k = 1, . . . ,K, the matrices

X :=
[
A1 · · · AK

]
and Y :=

[
A1 ⊗Q1 · · · AK ⊗QK

]
have the same singular values up to multiplicities.

Proof. Define the block diagonal matrix D := diag(1n1 ⊗Q1, . . . ,1nK
⊗QK).

Then Y = [A1 ⊗ 1p . . . AK ⊗ 1p]D. Since D is orthogonal, Y has the same
singular values as [A1 ⊗ 1p . . . AK ⊗ 1p]. Up to a permutation of rows and
columns, this is X ⊗ 1p. The proof is completed by applying the singular value
property of Kronecker products [GVL13, section 12.3.1].

Remark 4.17. If each Ak in the above lemma is itself a Kronecker product
of at least d matrices and we replace Y by

[
Q1 ⊗d A1 . . . QK ⊗d AK

]
, the

statement still holds, because changing the order of the factors only changes their
Kronecker product by a permutation of rows and columns [GVL13, Equation
12.3.1].

Now we can prove that the condition number of the SBTD is invariant under
Tucker compression.

Proof of Theorem 4.14. For the SBTDs A = A1 + · · ·+ AR and G = G1 + · · ·+
GR we denote their associated Terracini matrices by TA1,...,AR

and TG1,...,GR
,

respectively (see (4.7)). Our strategy is assembling the Terracini matrices in an
appropriate way so that we can compare their singular values.

For each r = 1, . . . , R, we apply Proposition 4.9 to obtain a basis BGr
for

TGrMm1,...,mD
r . That is, we write Gr in HOSVD form (Ur

1 , . . . , U
r
D) · Cr and

compute matrices Ur⊥
d so that [Ur

d Ur⊥
d ] is orthogonal for each d. The vectors

ûd
rj are scaled versions of e(lr

d)
j as in Proposition 4.9. That is, they are defined

such that the transpose of jth right singular vector of the dth flattening of the
rth core (Cr)(d) is (ûd

j )T (Cr)(d). This gives the basis

BGr
:=
{

(Ur
1 , . . . , U

r
D) · Ċr

}
∪
{

(Ur
1 , . . . , U

r
d−1, U

r⊥
d ei(ûd

rj)T , Ur
d+1, . . . , U

r
D) · Cr

}
with Ċ ∈ BC , d = 1, . . . , D, i = 1, . . . ,md − ld and j = 1, . . . , lrd.
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For TAr
Mn1,...,nD

r , we can use a basis of the same form, constructed as follows:
We form Q⊥

d so that the columns of [Qd Q⊥
d ] are an orthonormal basis of Rnd .

Then define
(QdU

r
d )⊥ :=

[
QdU

r⊥
d Q⊥

d

]
∈ Rnd×(nd−ld).

The columns of this matrix are a basis for the orthogonal complement of the
column space of QdU

r
d . A basis BAr of TArMn1,...,nD

r is obtained by applying
(4.9) where QdU

r
d fulfils the role of Ur

d and (QdU
r
d )⊥ fulfils that of U⊥

d .

By rearranging the order of the basis vectors and factoring out all Qd and Q⊥
d ,

we get a partition of this basis:

BAr
= (Q1 ⊗ · · · ⊗QD)(BGr

) ∪Br,⊥
1 ∪ · · · ∪Br,⊥

D , (4.15)

where

Br,⊥
d =


Q⊥

d ⊗d

⊗
d′ ̸=d

Qd′

(e(nd−md)
i (ûd

rj)T )⊗d

⊗
d′ ̸=d

Ur
d

 Cr


nd−md,lr

d

i,j=1

.

By construction of Q⊥
d , the subspaces that for a fixed r are spanned by the

D + 1 bases in (4.15) are pairwise orthogonal. Therefore, collecting BAr
for all

r gives a Terracini matrix of A, which splits into D + 1 pairwise orthogonal
blocks. Up to a permutation of the columns,

TA1,...,AR
=
[
(Q1 ⊗ · · · ⊗QD)TG1,...,GR

T⊥
1 . . . T⊥

D

]
, (4.16)

where the columns of each T⊥
d are B1,⊥

d ∪ · · · ∪BR,⊥
d . Explicitly,

T⊥
d =

Q⊥
d ⊗d

⊗
d′ ̸=d

Qd′

e(nd−md)
i ⊗d

(ûd
rj)T ⊗d

⊗
d′ ̸=d

Ur
d

 Cr

R,nd−md,lr
d

r,i,j=1

.

Because the blocks are pairwise orthogonal, the singular values of TA1,...,AR
are

the union of those of TG1,...,GR
and those of each T⊥

d separately.

The factor
(
Q⊥

d ⊗d

⊗
d′ ̸=d Qd′

)
is orthogonal and thus can be omitted for

the purpose of computing singular values. By the definition of the Kronecker
product, the columns of the remaining factor can be permuted to

T̃⊥
d :=

1nd−md
⊗d

(ûd
rj)T ⊗d

⊗
d′ ̸=d

Ur
d

 Cr

R,lr
d

r,j=1
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hence, its singular values are just those of T⊥
d . We will show that this is effectively

a submatrix of TG1,...,GR
so that the desired result follows from the interlacing

property of singular values [GVL13, Theorem 8.1.7].

For any r and d, take all tangent vectors at Gr in the set V d
r ∪W d

r with

V d
r :=


(Ur

de
(lr

d)
i (ûd

rj)T
)
⊗d

⊗
d′ ̸=d

Ur
d

 Cr


lr
d,lr

d

i,j=1

and

W d
r :=


(Ur⊥

d e
(md−lr

d)
i (ûd

rj)T
)
⊗d

⊗
d′ ̸=d

Ur
d

 Cr


md−lr

d,lr
d

i,j=1

.

In the proofs of Propositions 4.6 and 4.8, we showed that all vectors in the same
form as V d

r are tangent to Mm1,...,mD
r . W d

r is just a subset of BGr
, the basis

we used for Gr. By construction of Ur⊥
d , the spaces spanned by V d

r and W d
r

are orthogonal. The inner products between the elements of V d
r (respectively,

W d
r ) are of the same form as (4.10). Hence, they are also zero. By collecting

V d
r ∪W d

r for all r, we get a subset of the columns of TG1,...,GR
:

T̃ part
d :=

[Ur
d Ur⊥

d ]⊗d

(ûd
rj)T ⊗d

⊗
d′ ̸=d

Ur
d

 Cr

R,ld
r

r,j=1

,

which has the same singular values as T̃⊥
d by Lemma 4.16. Hence, the singular

values of T⊥
d are interlaced between those of TG1,...,GR

. By reminding ourselves
that (4.16) is a decomposition into pairwise orthogonal blocks, we can see that
TA1,...,AR

and TG1,...,GR
must have the same extreme singular values.

4.5.2 Improved algorithm for computing the condition number

One computational advantage of Theorem 4.14 is that for any SBTD that is
computed using the compress-decompose-expand strategy, the condition number
can be computed at a low extra cost right after the decompose phase. That is,
it is not necessary to compute the expanded decomposition in order to know its
condition number. Furthermore, if a subspace-constrained SBTD A1 + · · ·+ AR

is given, it can be compressed prior to computing its condition number. This
gives Algorithm 1.

This algorithm was applied to the numerical example mentioned in the
introduction. Its computational complexity compares to that of the naive
approach as follows.
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Algorithm 1 Computation of κSBTD(A1, . . . ,AR) with Ar = (Ur
1 , . . . , U

r
D) · Cr.

for d = 1, . . . , D do
Compute a QR decomposition QdRd = [U1

d , . . . , U
r
d ].

end for
for r = 1, . . . , R do

Gr ← (QT
1 , . . . , Q

T
D) · Ar

end for
Compute κSBTD(G1, . . . ,GR) using the algorithm from Section 4.4.1.

Proposition 4.18. Let A = A1 + · · ·+ AR ∈ Rn×···×n be a subspace-constrained
SBTD with core structures Mr, where each Mr is an open submanifold of
Rl×···×l. Assume that the summands Ar are given in HOSVD form. Assume
that computing the QR and singular value decomposition of an m× n-matrix
with m ⩾ n both take O(mn2) arithmetic operations. The number of arithmetic
operations involved in applying (4.8) directly and applying Algorithm 1 is

O(nDR2l2D +nDR2D2l2(n− l)2) and O(DnR2l2 +RD+2l3D +RD+4lD+4D2),

respectively.

Proof. First, we apply (4.9) directly to Ar = (Ur
1 , . . . , U

r
D) · Cr. Computing the

complement Ur⊥
d of Ur

d is negligible. The basis vectors in (4.9) with indices
i, j, d can be computed as tensors whose dth unfolding is Ur⊥

d ei(Udej)T (Ar)(d),
which takes O(lnD) operations per basis vector. Computing Ur

1 ⊗· · ·⊗Ur
D takes

O(nDlD) time. This gives a time of O(RnDlD +Rl2(n− l)nD) to construct the
full Terracini matrix, whose dimensions are nD×p where p = R(lD +Dl(n− l)).
Computing its singular values requires O(nDp2) = O(nDR2l2D +nDR2D2l2(n−
l)2) operations [GVL13].

Next, we consider Algorithm 1. The matrices [U1
d , . . . , U

r
d ] have m := Rl columns

and n rows, which gives a complexity of O(nR2l2) for each QR decomposition
[GVL13]. Converting each Gr to HOSVD form takes O(DmD+1) time [VVM12].
Constructing the Terracini matrix is negligible compared to computing its
singular values, as before. In this case, the Terracini matrix has dimensions
mD×q where q = R(lD +Dl(m−l)) = O(RlD +R2Dl2). The computation of the
singular values requires O(mDq2) = O(RDlDq2) = O(RD+2l3D +RD+4lD+4D2)
operations.

If n is significantly larger than Rl in this proposition, the complexity is
approximated by O(nD+2R2D2l2) and O(RlnD), respectively, which shows
the superiority of Algorithm 1. On the other hand, if n ⩽ Rl, the algorithm
does not compress the decomposition and merely adds overhead.
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Figure 4.1: Condition number of the BTD of GN ∈ R4×4×2 and that of AN ∈
R60×40×40 from the experiments in Section 4.6

Figure 4.2: Ratio between the estimated forward error based on (4.3) and the
true forward error for GN in the experiments in Section 4.6. Only cases with a
residual

∥∥Ĝ − G
∥∥ ⩽ 10−8 were considered.

4.6 Numerical experiments

We present a few numerical experiments illustrating the main result,
Theorem 4.14, with a sequence of ill-conditioned block term decompositions.
All numerical computations were performed on an Intel Xeon CPU E5-2697
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Figure 4.3: Number of iterations of btd_nls applied to GN ∈ R4×4×2 and
AN ∈ R60×40×40 from the experiments in Section 4.6.

v3 running on 16 out of 28 physical cores and 126GB memory. The tensor
decompositions were computed in MATLAB R2018b with Tensorlab 3.0
[VDDL17] and the other computations were performed in Julia v1.64 [Bez+17].

De Silva and Lim [SL08] give an explicit parametrisation of a general curve of
rank-2 tensors XN that converges to a rank-3 tensor as N →∞. In such cases,
the condition number diverges to infinity [BV18b]. Given the vectors xd and yd

for d = 1, 2, 3, the sequence {XN}∞
N=1 is given by

N

3⊗
d=1

(
xd + yd

N

)
−N

3⊗
d=1

xd = y1⊗x2⊗x3+x1⊗y2⊗x3+x1⊗x2⊗y3+O
(

1
N

)
.

This example can easily be generalised to block term decompositions. Take any
third-order core tensor C of full multilinear rank and any two sets of full-rank
matrices {Ad}3

d=1 and {Bd}3
d=1. Then set

GN :=
(
N

3⊗
d=1

(
Bd + 1

N
Ad

)
−N

3⊗
d=1

Bd

)
C . (4.17)

Both blocks have the same multilinear rank assuming Bd and Bd+ 1
NAd have full

rank. Similarly to XN , we can see that GN equals a three-term BTD independent
of N , plus o(N−1) terms. Its condition number diverges as N →∞ by a special
case of [BV18b, Theorem 1.4].

4The code for all experiments is available in a public repository at https://gitlab.
kuleuven.be/u0072863/paper.experiments_dbv2022_sbtd_compression

https://gitlab.kuleuven.be/u0072863/paper.experiments_dbv2022_sbtd_compression
https://gitlab.kuleuven.be/u0072863/paper.experiments_dbv2022_sbtd_compression


78 STRUCTURED BLOCK-TERM DECOMPOSITIONS AND TUCKER COMPRESSION

We generated tensors of this model where the core tensor C ∈ R2×2×1 and
the matrices A1, A2 ∈ R4×2, A3 ∈ R2×1 all have standard normally distributed
entries and Bd is the Q-factor of the QR decomposition of a matrix with
standard normal entries. For several values of N , we generated 2000 tensors
of model (4.17). For each of these we generated an expanded representation
AN = (Q1, Q2, Q3) · GN for some Q1, Q2, Q3 with orthonormal columns. The
dimensions of the tensors are GN ∈ R4×4×2 and AN ∈ R60×40×40.

We used Tensorlab’s Gauss–Newton method ll1_nls [VDDL17] to compute
a two-term (2, 2, 1)-BTD of both the (sequences of) tensors AN and GN

independently. Since AN has a subspace-constrained BTD with core tensor
GN , by Theorem 4.14 their condition numbers are the same. Some built-in
optimisations were disabled, namely automatic Tucker compression and the use
of the iterative solver to solve the linear system to compute the quasi–Newton
update direction. This is to ensure the same algorithm is used for both tensors.
Since ll1_nls stops when the backward error reaches a certain threshold, this
generates exact decompositions of nearby tensors, which allows us to compare
the forward and backward error.

A violin plot of the condition number of both BTDs is shown in Figure 4.1. The
condition number does indeed increase with the parameter N . Moreover, the
distribution of the condition number of the BTD of GN is the same as that of AN .
We did find that the ratio between the computed condition numbers κ̂ deviated
slightly from one in the more ill-conditioned cases. The most extreme case was
κ̂(A1, . . . ,AR) ≈ (1− 2 · 10−5)κ̂(G1, . . . ,GR) where κ > 1012. We attribute this
to numerical roundoff. These results thus provide a numerical verification of
Theorem 4.14.

A major application of the condition number is to estimate the forward error.
For a true decomposition G =

∑R
r=1 Gr and a computed decomposition Ĝ =∑R

r=1 Ĝr, the forward error is measured as

e = min
π∈SR

√√√√ r∑
r=1

∥∥Gr − Ĝπ(r)
∥∥2
,

where SR is the symmetric group of R elements. By (4.3) we can estimate that
e ≲ κBTD

∥∥G − Ĝ
∥∥ as long as the residual

∥∥G − Ĝ
∥∥ is not too large. Figure 4.2

shows that this bound tends to hold when the residual is at most 10−8.

Finally, the condition number is related to convergence rates of iterative
algorithms to compute the decomposition. The estimates of the convergence
rate of the Riemannian Gauss-Newton method from [BV18a] would be the same
for GN and AN . The influence of the condition number (4.2) on flat optimisation
methods like ll1_nls has not yet been studied. Nonetheless, Figure 4.3 seems
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to indicate that the required number of iterations is not affected by compression.
It also shows that convergence gets slower as the condition number increases.

The cost per iteration is expected to be a function of only the dimensions of
the tensor and the block terms, as only direct linear algebra routines are used
to compute the iteration steps [SVBDL13]. By using the compressed tensor
GN instead of AN , the geometric mean of the speedup per iteration was 9.5. In
[BA98], speedup factors of up to 40 were observed for the ALS algorithm applied
to tensors used in chemometrics. Note that this is the speedup of computing
the decomposition. For the sugar data set of [BA98], the computation of the
condition number, as mentioned in the introduction, was sped up by a factor of
15 000 by first Tucker compressing the tensor from size 265×371×7 to 3×3×3.

4.7 Conclusion

In this chapter, we introduced the structured block term decomposition, a
generalisation of the tensor rank and block term decomposition. We studied the
geometry of the associated manifold in Section 4.3 and provided an orthonormal
basis for the tangent space in Section 4.4. This gives an algorithm to compute
the condition number, as well as some estimates of it.

In Section 4.5, we generalised Tucker compression to the SBTD. If a tensor
A can be compressed as A = (Q1, . . . , QD) · G and the core G has an SBTD,
this SBTD can be converted to an SBTD of A. Our main result states that
the condition numbers of these two SBTDs are identical. This is unlike some
other problems, where the condition number of the structured problem can be
significantly lower [ANT19].

In Section 4.5.2, we exploited our theorem to provide an algorithm to compute
the condition number of the SBTD that can speed up the state-of-the-art method
by over four orders of magnitude in certain practical cases. The invariance
of the condition number under Tucker compression suggests that the local
convergence rate of certain optimisation methods is unaffected by compression,
even though the search space is reduced. In particular, we observed that
Tensorlab’s [VDDL17] ll1_nls required about the same number of iterations
for computing the compressed and uncompressed decomposition.





Chapter 5

Condition of symmetric tensor
decompositions

Sections 5.1-5.3 consist of the journal article [DBV23b].

N. Dewaele, P. Breiding and N. Vannieuwenhoven. “Three decompositions of
symmetric tensors have similar condition numbers”. In: Linear Algebra and
its Applications 664 (May 2023), pp. 253–263.

The preprint version of this article contained an appendix, which was turned
into Section 5.4. This section is a straightforward generalisation of Section 5.2,
but it is kept separate because it introduces complicated notation. The results
presented in this chapter were obtained in collaboration with all authors of
the article.

Abstract

We relate the condition numbers of computing three decompositions of symmetric
tensors: the polyadic decomposition, the Waring decomposition, and a Tucker-
compressed Waring decomposition. Based on this relation we can speed up the
computation of these condition numbers by orders of magnitude through Tucker
compression.

81
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5.1 Introduction

Many problems in machine learning and signal processing involve computing
a decomposition of a symmetric tensor [Ana+14]; an order-D tensor A =
[ai1,...,iD

]ni1,...,iD=1 ∈ Rn×···×n is symmetric if its entries ai1,...,iD
are invariant

under all permutations of the indices i1, . . . , iD. We establish a close connection
between the numerical sensitivity of the following three increasingly structured
decomposition problems associated with a symmetric tensor A:

1. A polyadic decomposition (PD) of A expresses A as a sum of (not necessarily
symmetric) tensors of rank 1. In other words, A =

∑R
r=1 Ar where R ∈ N,

Ar = αr a
(1)
r ⊗ · · · ⊗ a(D)

r , αr ∈ R \ {0} and each a
(i)
r is a point on the

sphere Sn−1 = {a ∈ Rn | ∥a∥2 = 1}.

2. A Waring decomposition (WD) is a special case of the PD where all
summands are symmetric. That is, for r = 1, . . . , R, we have that Ar =
αr a

⊗D
r where αr ∈ R \ {0}, ar ∈ Sn−1, and a⊗D

r is the tensor product of
D copies of ar.

3. A Q-compressed Waring decomposition (Q-WD) is defined as follows.
A symmetric tensor A can be represented in a minimal subspace by
a symmetric Tucker decomposition [Tuc66; DLDMV00a], i.e., A =
(Q, . . . , Q) · G where Q ∈ Rn×m has orthonormal columns and G ∈
Rm×···×m is symmetric with m < n. We write this as A = Q⊗DG . If G has
a WD G =

∑R
r=1 Gr, then it can be converted to a WD A =

∑R
r=1 Q

⊗DGr.
We call a WD of this form a Q-WD.

One is often interested in a minimal PD and WD of a given tensor A, i.e., a
decomposition of A consisting of the smallest possible number of summands R.
This number is known as the rank of A in the case of the PD and symmetric
rank for the WD. A well-known conjecture attributed to Comon states that
the rank and symmetric rank are equal for most symmetric tensors [Com+08].
This conjecture holds generically for small ranks [Fri16; COV17]. Unless stated
otherwise, we do not assume that any of the decompositions studied here attains
the rank.

For the above three types of decompositions, the summands are points on a
smooth manifold M⊂ Rn×···×n, so they are join decompositions [BV18b]. For
the PD, the summands lie on the Segre manifold Sn,D, for the WD they lie
on the Veronese manifold Vn,D [Lan12], and for the Q-WD they lie on the
manifold WQ,D = Q⊗D(Vm,D). In the remainder, we drop the subscripts on the
manifolds if they are clear from the context.
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We study the sensitivity of the summands in these three decompositions with
respect to perturbations of A. Consider a decomposition of A with summands
a = (A1, . . . ,AR) ∈ M×R, where M is one of the three manifolds described
above and M×R is the product of R copies of M. Under mild conditions
[BV18b], a is an isolated decomposition of A and the addition map Σ :M×R 7→
Rn×···×n, (A1, . . . ,AR) 7→ A1 + · · ·+ AR admits a local inverse Σ−1

a . In this case,
the sensitivity of the decomposition with respect to A can be measured by the
condition number [Ric66]:

κM(A1, . . . ,AR) := lim
δ→0

sup
Ã∈Σ(M×R),

∥A−Ã∥⩽δ

∥Σ−1
a (A)− Σ−1

a (Ã)∥
∥A − Ã∥

, (5.1)

where ∥·∥ is the Euclidean or Frobenius norm. The condition number κM(a) =
∞ if and only if the kernel of the derivative of Σ is nontrivial. The latter can
be caused by two situations. Either a is not isolated or the polynomial system
defined by Σ(a) − A = 0 is singular. In accordance with this, we say that
an isolated decomposition a is singular if its condition number is infinite and
nonsingular otherwise.

There are many known spaces of symmetric tensors in which, for a generic
tensor A, the minimal PD and WD of A are unique (up to a permutation of
the summands) and nonsingular [Lan12]. Thus, these decompositions have a
finite condition number. Moreover, there exist non-minimal WDs with a finite
condition number where the number of summands exceeds the rank. The earliest
example that we know of was given by Angelini and Chiantini [AC21]. They
generated a WD A =

∑18
r=1 Ar where A ∈

(
R3)⊗9 has rank 17 over C. For this

example, we calculated κS(A1, . . . ,A18) and κV(A1, . . . ,A18) with the algorithm
from [BV18b]. Both condition numbers are equal to about 50610.

Suppose A has a Q-WD a = (A1, . . . ,AR). It can also be regarded as a WD or PD
by ignoring symmetry or subspace constraints. We investigate the relationship
between the condition numbers of these three problems at a. The difference
between κW , κV , and κS is the domain of the supremum in (5.1), i.e., the
set of considered perturbations. Since W ⊆ V ⊆ S, it follows from (5.1) that
κW(a) ⩽ κV(a) ⩽ κS(a). In general, restricting the domain of a map can
drastically reduce the condition number. For instance, consider the problem
of evaluating the matrix logarithm. In this case, the condition number for
perturbations restricted to the symplectic group can be much smaller than the
one for unconstrained perturbations [ANT19]. This motivates us to study if a
similar relation exists for κW , κV , and κS . Similarly to Chapter 4, we show the
following:
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Theorem 5.1. Let G = G1 + · · · + GR ∈ Rm×···×m be a WD of an order-D
tensor.

1. Take Q ∈ Rn×m with orthonormal columns and set Ar = Q⊗DGr, for
r = 1, . . . , R. Then

κWQ,D
(A1, . . . ,AR) ⩽ κVn,D

(A1, . . . ,AR) ⩽
√
DκVm,D

(G1, . . . ,GR),

where the right-hand side is equal to
√
DκWQ,D

(A1, . . . ,AR).

2. Let U ∈ Rℓ×m have orthonormal columns and Br := U⊗DGr for all
r. If min(ℓ, n) > m, then κVn,D

(A1, . . . ,AR) = κVℓ,D
(B1, . . . ,BR); i.e.,

the condition number is invariant under non-minimal symmetric Tucker
compressions.

Numerical evidence indicates a stronger connection, which can be proved in the
rank-2 case:

Conjecture 5.2. If A =
∑R

r=1 Ar is a WD of an order-D symmetric tensor
A ∈ Rn×···×n with D ⩾ 3, then κV(A1, . . . ,AR) = κS(A1, . . . ,AR).

Proposition 5.3. Conjecture 5.2 holds for R ⩽ 2.

In conjunction with Theorem 4.14, Conjecture 5.2 would imply that κW(a) =
κV(a) = κS(a) for any Q-WD a, which is sharper than Theorem 5.1. This entails
that the supremum in (5.1) applied to the Segre manifold (i.e., M = S) can
be attained locally with a perturbation Ã ∈ Σ(W×R). Another implication of
Conjecture 5.2 would be that a WD of a tensor A is isolated and nonsingular
if and only if it is also isolated and nonsingular as a PD without symmetry
conditions.

A practical consequence of Theorem 5.1 relates to the following procedure from
[BV18b] to compute the condition number. Let M be either S or V. Let the
matrix TM

Ar
contain as columns an orthonormal basis of TAr

M for r = 1, . . . , R,
where TAr

M is the tangent space to M at Ar. Then the condition number is
characterized by the Terracini matrix TM

A1,...,AR
:

TM
A1,...,AR

:=
[
TM

A1
· · · TM

AR

]
and κM(A1, . . . ,AR) = σmin(TM

A1,...,AR
)−1,
(5.2)

where σmin(A) is the smallest singular value of A. Consider a WD A =
∑R

r=1 Ar

with Ar = αra
⊗D
r for some αr ∈ R \ {0} and ar ∈ Sn−1. For this decomposition

the Terracini matrices for the PD and the WD, respectively, are given as follows:
for any two matrices X and A, let X ⊗d A

⊗D−1 := A⊗d−1 ⊗X ⊗A⊗D−d. The
tangent space to the sphere at ar is the orthogonal complement a⊥

r of ar. Let
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U(ar) ∈ Rn×(n−1) be a matrix whose columns form an orthonormal basis of a⊥
r .

Then the Terracini matrices are

TS
A1,...,AR

=
[
a⊗D

r

[
U(ar)⊗d a

⊗D−1
r

]D

d=1

]R

r=1
, and (5.3)

TV
A1,...,AR

=
[
a⊗D

r

1√
D

D∑
d=1

U(ar)⊗d a
⊗D−1
r

]R

r=1
. (5.4)

A major implication of Theorem 5.1 is that we can speed up the computation
of κVn,D

(A1, . . . ,AR). Assuming n > R and Ar = αra
⊗D
r with αr ̸= 0 and

ar ∈ Sn−1, the following computes κVn,D
(A1, . . . ,AR):

1. Compute a thin singular value decomposition [ar]Rr=1 = QΣV T and set
[gr]Rr=1 := ΣV T ∈ Rm×R.

2. Construct br = [gT
r 0]T ∈ Rℓ where ℓ = m+ 1 and set Br = αrb

⊗D
r for

each r.

3. Construct TV
B1,...,BR

as in (5.3) and compute κV(B1, . . . ,BR) by applying
(5.2).

Steps 1-2 give one possible choice of Q and U = [I 0]T and Gr = αrg
⊗D
r that

satisfy Theorem 5.1. A Julia [Bez+17] implementation of this method is provided
along with the arXiv version of this manuscript. Since TV

B1,...,BR
∈ RℓD×Rℓ and

ℓ ⩽ R+1, step 3 can be performed in O(RD+4) operations, adding to the O(nR2)
cost of step 1. Applying (5.2) to TV

A1,...,AR
∈ RnD×Rn would involve O(nD+2R2)

operations. The algorithm can reach significant speedups if n≫ R. For instance,
we applied the Julia code to a WD with (n,D,R, ℓ) = (100, 3, 10, 11) on an Intel
Xeon CPU E5-2697 v3 running on 8 cores and 126GB memory. The computation
times were 115.6 and 0.0092 seconds for the original and improved algorithm,
respectively.

5.2 Condition number of a Q-WD

In this section, we prove Theorem 5.1 based on the following insight: Σ(V×R) is
locally a manifold whose tangent space is decomposed as T ⊕ T⊥ where T is
the tangent space to Σ(W×R) and T⊥ is its orthogonal complement. As long as
n > m, the effect of the worst perturbation to A inside T⊥ is independent of n
and can be bounded as in the first statement. From this, the second statement
follows as well.
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Proof of Theorem 5.1. The first inequality follows from the inclusion WQ,D ⊆
Vn,D. The last follows from the fact that Q⊗D is an isometry between Vm,D and
WQ,D. It remains to show the middle inequality. If m = n, Q is an orthogonal
change of basis, which preserves the condition number. Thus, we assume n > m.

For each r, let Gr = αrg
⊗D
r with αr ∈ R \ {0} and gr ∈ Sm−1, let ar = Qgr and

define Ur so that the matrix [gr Ur] ∈ Rm×m is orthogonal. Construct TV
Gr

by applying (5.3) to Gr. Complete Q to an orthonormal basis [Q Q⊥] of Rn.
The columns of U(ar) := [QUr Q⊥] form an orthonormal basis of Tar

Sn−1.
Substituting this into (5.3) gives TVn,D

A1,...,AR
=
[
Tr T⊥

r

]R
r=1 with

Tr =
[
a⊗D

r
1√
D

(∑D
d=1 QUr ⊗d a

⊗D−1
r

)]
and T⊥

r = 1√
D

D∑
d=1

Q⊥ ⊗d a
⊗D−1
r .

Since ar = Qgr, we have Tr = Q⊗DT
Vm,D

Gr
. Thus, up to a column permutation,

T
Vn,D

A1,...,AR
is the horizontal concatenation of Q⊗DT

Vm,D

G1,...,GR
and T⊥ := [ T ⊥

1 ... T ⊥
R ].

The column spaces of Q⊗D and T⊥ are orthogonal, so that the singular values of
T

Vn,D

A1,...,AR
are the union of those of Q⊗DT

Vm,D

G1,...,GR
and T⊥ separately. Since Q has

orthonormal columns, Q⊗DT
Vm,D

G1,...,GR
has the same singular values as TVm,D

G1,...,GR
,

so it suffices to show σmin(T⊥) ⩾ σmin(TVm,D

G1,...,GR
)/
√
D.

To do this, we compute (T⊥)TT⊥ = [(T⊥
r1

)T (T⊥
r2

)]Rr1,r2=1, where the block at
(r1, r2) is

1
D

(
D∑

d=1
Q⊥ ⊗d a

⊗D−1
r1

)T ( D∑
d=1

Q⊥ ⊗d a
⊗D−1
r2

)
= ⟨ar1 , ar2⟩

D−1
In−m

= ⟨gr1 , gr2⟩
D−1

In−m. (5.5)

Consider two modifications of T⊥ that preserve the singular values. First, let
T̂⊥ := [In−m ⊗ g⊗D−1

r ]Rr=1, then by (5.5), we have (T̂⊥)T T̂⊥ = (T⊥)T (T⊥), so
they have the same singular values. Second, if we define T̃⊥ := [[gr Ur] ⊗
g⊗D−1

r ]Rr=1, then T̃⊥ and T̂⊥ also have the same singular values, since [gr Ur]
and In−m are orthogonal up to multiplicities by Lemma 4.16. Hence, we can
proceed with T̃⊥ instead of T⊥. Similarly, we modify TV

G1,...,GR
. Scaling up all
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its columns of the form g⊗D
r by

√
D gives

T̃V
G1,...,GR

:=
[
√
Dg⊗D

r

1√
D

D∑
d=1

Ur ⊗d g
⊗D−1
r

]R

r=1

=
[

1√
D

D∑
d=1

[gr Ur]⊗d g
⊗D−1
r

]R

r=1

,

i.e., T̃V
G1,...,GR

= TV
G1,...,GR

∆ where ∆ is diagonal and σmin(∆) = 1. Hence,
σmin(T̃V

G1,...,GR
) ⩾ σmin(TV

G1,...,GR
).

To compare the singular values of T̃⊥ and T̃V
G1,...,GR

, take the singular vector
v = [vr ∈ Rm]Rr=1 of T̃⊥ corresponding to the smallest singular value and
compute

T̃
Vm,D

G1,...,GR
v =

R∑
r=1

(
1√
D

D∑
d=1

[gr Ur]⊗d g
⊗D−1
r

)
vr

= 1√
D

D∑
d=1

R∑
r=1

([gr Ur]vr)⊗d g
⊗D−1
r .

Since all the summands in the outer sum have the same norm, the triangle
inequality gives

∥∥∥T̃Vm,D

G1,...,GR
v
∥∥∥ ⩽
√
D

∥∥∥∥∥
R∑

r=1
([gr Ur]vr)⊗ g⊗D−1

r

∥∥∥∥∥
=
√
D
∥∥∥[[gr Ur]⊗ g⊗D−1

r

]R
r=1 v

∥∥∥ =
√
D · σmin(T̃⊥).

As σmin(TV
G1,...,GR

) ⩽ σmin(T̃V
G1,...,GR

) ⩽
∥∥T̃V

G1,...,GR
v
∥∥, and σmin(T̃⊥) = σmin(T⊥)

this gives the desired bound.

For the second statement, recall that the singular values of TVn,D

A1,...,AR
are the

union of those of TVm,D

G1,...,GR
and those of T̃⊥ whenever n > m. Observe that

both of these matrices are independent of n and Q. Hence, applying the above
calculation to B1, . . . ,BR ∈ Vℓ,D ⊂ Rℓ×···×ℓ and orthogonal U ∈ Rℓ×m under
the assumption ℓ > m would reveal the same singular values.
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5.3 Equivalence between the PD and WD

Conjecture 5.2 is a stronger statement than Theorem 5.1, but it seems too
challenging to show in general. We present a proof for the case where R = 2
and present numerical evidence for the general case.

Proof of Proposition 5.3. For R = 1, both condition numbers are equal to 1 by
(5.2) and (5.3). For R = 2, the proof comprises computing the singular values
of (5.2) for the PD. Let A1 = λ1u

⊗D and A2 = λ2v
⊗D with u, v ∈ Sn−1 and

λ1, λ2 ̸= 0. Note that both matrices in (5.3) contain [u⊗D, v⊗D] as a subset
of their columns. If u and v are collinear, this submatrix is singular, in which
case κS(A1,A2) = κV(A1,A2) = ∞. In the remainder, we will assume that u
and v are linearly independent. Let U, V ∈ Rn×(n−1) be orthonormal bases
of TuSn−1 = u⊥ and TvSn−1 = v⊥, respectively. Applying (5.3) and using as
before the notation X ⊗d A

⊗D−1 := A⊗d−1 ⊗X ⊗A⊗D−d gives

TS
A1,A2

=
[
u⊗D

[
U ⊗d u

⊗D−1]D
d=1 v⊗D

[
V ⊗d v

⊗D−1]D
d=1

]
.

Next, define the vectors qj
D :=

[ 1√
j(j+1)

1T
j

−j√
j(j+1)

0T
D−j−1

]T ∈ RD where

1N , 0N ∈ RN are the vectors consisting of ones and zeros, respectively. We set
QD :=

[
1√
D

1D q1
D . . . qD−1

D

]
∈ RD×D. This matrix is called Helmert’s

orthogonal matrix [Hel76]; the rows of its right D × (D − 1) submatrix are
the vertices of a regular simplex in RD−1. We transform TS

A1,A2
into a matrix

T̃S with the same singular values using an orthogonal change of basis: T̃S :=
TS

A1,A2
diag(1, I ⊗QD, 1, I ⊗QD). This gives

T̃S =
[
u⊗D Su S1

u,⊥ · · · SD−1
u,⊥ v⊗D Sv S1

v,⊥ · · · SD−1
v,⊥

]
,

where Su = 1√
D

D∑
d=1

(U ⊗d u
⊗D−1) and Sj

u,⊥ =
j+1∑
i=1

(qj
D)i(U ⊗i u

⊗D−1),

and analogously for v. After rearranging the blocks, we get the following partition
of T̃S :

T̃S ∼=
[
TV T 1

⊥ · · · TD−1
⊥

]
(5.6)

where TV =
[
u⊗D Su v⊗D Sv

]
and T d

⊥ :=
[
Sd

u,⊥ Sd
v,⊥
]

;

herein, we recognise (5.3).

Now, we will show that these D blocks are pairwise orthogonal, so that the
singular values of T̃S are the union of the singular values of the blocks. To see
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this, we compute (Sj
u,⊥)T (Sj′

v,⊥). Let α := ⟨u, v⟩. Without loss of generality, we
can assume that j < j′. Let

Xi = U ⊗i u
⊗D−1 and Yi′ = V ⊗i′ v⊗D−1;

β= := αD−1UTV and β ̸= := αD−2UT vuTV.

Note that XT
i Yi′ = β=, if i = i′, and that XT

i Yi′ = β ̸=, if i ̸= i′. Up to the
constant (j(j + 1)j′(j′ + 1))− 1

2 , the inner products (Sj
u,⊥)T (Sj′

v,⊥) are

(X1 + · · ·+Xj − jXj+1)T (Y1 + · · ·+ Yj + · · ·+ Yj′ − j′Yj′+1) , (5.7)

which is a linear form in β= and β ̸=. First, we calculate the terms in (5.7)
involving the case i = i′. There are j terms of the form XT

i Yi with i ⩽ j < j′

and one of the form −jXj+1Yj+1. Adding these terms together shows that
the coefficient of β= is zero. Second, we identify all terms in (5.7) where the
coefficient of β ̸= is positive. For each Xi with i ⩽ j, there are j′ − 1 terms
XT

i Yi′ with i′ ̸= i. One more term has a positive coefficient of β ̸=, which is
jj′Xj+1Yj′+1. Together, these terms add up to j(j′ − 1)β ̸= + jj′β ̸=. Third, we
accumulate the negative coefficients of β ̸=, which involve either Xj+1 or Yj′+1.
For Xj+1, there are j′ − 1 terms Yi′ with j + 1 ̸= i′ ⩽ j′. For Yj′+1, there are
j terms Xi with i ⩽ j. Hence, the terms with a negative coefficient of β ̸= add
up to −j(j′ − 1)β ̸= − jj′β ̸=. This means the terms involving β ̸= also vanish.
Therefore, all inner products (Sj

u,⊥)T (Sj′

v,⊥) vanish for j ̸= j′.

Furthermore, the columns of TV are symmetric tensors. The space of
symmetric tensors is the linear span of the Veronese manifold V := {αz⊗D |
α ∈ R \ {0}, z ∈ Sn−1}. Since

∑j+1
i=1 (qj

D)i = 0, we have (z⊗D)TSj
u,⊥ =∑j+1

i=1 (zTu)D−1zTU(qj
D)i = 0, so that the columns of Sj

u,⊥ and TV are pairwise
orthogonal. We can therefore conclude that (5.6) partitions T̃S into pairwise
orthogonal blocks.

Next, we compute all singular values of T̃S by computing the singular values of
the blocks in (5.6) separately. Using the same notation as before, we compute
the blocks of (T j

⊥)TT j
⊥:

(Sj
u,⊥)T (Sj

v,⊥) = 1
j(j + 1) (X1 + · · ·+Xj − jXj+1)T (Y1 + · · ·+ Yj − jYj+1)

= 1
j(j + 1) (a+ b+ c+ d)
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where
a
b
c
d

 =


(X1 + · · ·+Xj)T (Y1 + · · ·+ Yj)
−(X1 + · · ·+Xj)T jYj+1
−jXT

j+1(Y1 + · · ·+ Yj)
j2XT

j+1Yj+1

 =


jβ= + (j2 − j)β ̸=

−j2β ̸=
−j2β ̸=
j2β=

 .
This gives (Sj

u,⊥)T (Sj
v,⊥) = β=− β ̸= = αD−1UTV −αD−2UT vuTV . Hence, the

Gramian of T j
⊥ is G⊥ := (T j

⊥)TT j
⊥, where

G⊥ =
[

In−1 αD−1UTV − αD−2UT vuTV
αD−1V TU − αD−2V TuvTU In−1

]
,

which is independent of j. The Gramian of TV is GS := (TV)TTV , i.e.,

GS =


1 0 αD

√
DαD−1uTV

× In−1
√
DαD−1UT v αD−1UTV + (D − 1)αD−2UT vuTV

× × 1 0
× × × In−1

 ,
where each × should be replaced by the transpose of corresponding element in
the upper diagonal part.

To continue, we exploit the liberty of choosing the bases U and V for the
orthogonal complements u⊥ and v⊥ respectively. By planar geometry, we can
choose these bases such that Ue1 = v−αu

∥v−αu∥ , V e1 = u−αv
∥u−αv∥ and Uej = V ej for

all j = 2, . . . , n− 1. Consequently, UT v =
√

1− α2e1, V Tu =
√

1− α2e1, and
UTV = diag(−α, 1, . . . , 1). Plugging these into G⊥, we get

G⊥ =
[
In−1 diag(−αD − αD−2(1− α2), αD−1, . . . , αD−1)
× In−1

]

= I2(n−1) +
[

0 A⊥
A⊥ 0

]
, (5.8)

where A⊥ := diag(−αD−2, αD−1, . . . , αD−1). Recall that the eigenvalues of[
0 AT

A 0
]

are ±σ(A), where σ are the singular values of A. Therefore, the
eigenvalues of G⊥ are λ(G⊥) = {1 ± αD−1, 1 ± αD−2}. We only need the
extreme eigenvalues, which are 1± αD−2 since |α|<1. For GS , we obtain

GS =


1 0 αD

√
DαD−1√1− α2eT

1
× I

√
DαD−1√1− α2e1 AS

× × 1 0
× × × In−1

 , (5.9)
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where AS = diag(−αD + (D − 1)αD−2(1 − α2), αD−1, . . . , αD−1). Define the
two matrices

Z =
[

αD
√
DαD−1√1− α2eT

1√
DαD−1√1− α2e1 AS

]
,

Z ′ :=
[

αD
√
DαD−1√1− α2

√
DαD−1√1− α2 −DαD + (D − 1)αD−2

]
.

The eigenvalues of GS are 1 ± σ(Z). Due to the sparse structure of Z, its
singular values are αD−1 and the singular values of Z ′. Since Z ′ is symmetric,
its eigenvalues and singular values coincide. We factor out αD−2 and compute
the eigenvalues in terms of the trace τ and determinant ∆. This gives τ = (D−
1)(1−α2), ∆ = −α2. The eigenvalues of Z ′ are λ1(Z ′) = αD−2

2
(
τ +
√
τ2 − 4∆

)
and λ2(Z ′) = αD−2

2
(
τ −
√
τ2 − 4∆

)
. Finally, we compare the eigenvalues of

GS to the extreme eigenvalues of G⊥. Since α2 < 1 and D ⩾ 3, we can derive a
bound on the eigenvalues of Z ′ as follows. Straightforward calculations show
that

4τ ⩾ 4(1 + ∆) ⇒ τ2 − 4∆ ⩾ τ2 − 4τ + 4

⇒
√
τ2 − 4∆ ⩾ 2− τ ⇒ 1

2(τ +
√
τ2 −∆) ⩾ 1.

Hence,GS has at least one eigenvalue less than or equal to the smallest eigenvalue
of G⊥, namely 1 + λ2(Z ′) ⩽ 1 + αD−2 if αD−2 is negative, and 1 − λ1(Z ′) ⩽
1− αD−2 otherwise. This shows that the smallest singular value of T̃S in (5.6)
is a singular value of TV , as required.

We conclude this section with a note on the possibility of extending the proof to
demonstrate Conjecture 5.2. The approach relies on the following two principles.

First, the set of singular values of TS
A1,...,AR

can be partitioned into the singular
values of TV

A1,...,AR
and a set of additional singular values corresponding to

singular vectors that are orthogonal to all symmetric tensors. These two sets of
singular values are the square roots of the eigenvalues of GS and G⊥, respectively.
This would still hold in the case where R > 2, since the first part of the proof
generalises straightforwardly.

Second, the Gramian matrix can be decomposed as the sum of the identity and
a sparse matrix, as in (5.8) and (5.9). For the case where R > 2, the Gramian
matrix would be less sparse. Therefore, we believe it to be significantly more
difficult to calculate the eigenvalues of (the analogues of) GS − I and G⊥ − I
exactly. To prove Conjecture 5.2, it seems natural to use estimates of these
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Figure 5.1: Ratio between the condition numbers of the PD and WD of an
n× · · · × n symmetric tensor of rank R. The displayed value is the maximum
over 100 test cases.

eigenvalues instead. However, numerical evidence indicates that the smallest
eigenvalues of GS − I and G⊥ − I, respectively, can get arbitrarily close to
each other for ill-conditioned decompositions. Therefore, any estimates of the
eigenvalues would have to be sharp.

5.3.1 Numerical experiments

We tested Conjecture 5.2 for third- and fourth-order tensors. For several small
values of n, we generated 100 random symmetric rank-R decompositions∑R

r=1 a
⊗D
r where ar ∼ N (0, In) using Julia v1.6 [Bez+17]. For each

decomposition, we computed the two condition numbers. By dimensionality
arguments, the condition number can only be finite if Rn <

(
n+D−1

D

)
, where the

right-hand side is the dimension of the space of symmetric n× · · · × n tensors
of order D [AH95]. We tested all values of R below this upper bound.

Figure 5.1 shows the ratio between the condition number of the PD and the
WD. A priori, it can never be less than 1. In practice, numerical computations
would sometimes find a ratio of 1 − 10−11 or less. This suggests that ratios
exceeding 1 by less than 10−11 can be explained by numerical roundoff. All
measurements displayed on the figure lie below this threshold.

5.4 The partially symmetric decomposition

In this section, we present a generalisation of Theorem 5.1 to the partially
symmetric case. We say that a tensor A of order D is partially symmetric if it
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is invariant under the permutation of some of its indices. That is, A is invariant
under some subgroup G of the symmetric group that is generated by pairwise
swaps. When this symmetry constraint is imposed on the summands in its PD,
the PD is called a partially symmetric tensor decomposition (PSTD). Write
the size and degree of the tensors as n = (n1, . . . , nK) and d = (d1, . . . , dK),
respectively. Then partially symmetric tensors of rank 1 form the image of the
map

Φ : R \ {0} × Sn1−1 × · · · × SnK −1 → Rn1×···×n1×···×nK

(α, a1, . . . , aK) 7→ αa⊗d1
1 ⊗ · · · ⊗ a⊗dK

K .

The image of Φ is known as the Segre–Veronese manifold SVn,d [Lan12].
Analogous to the Q-WD, a (Q1, . . . , QK)-PSTD is a PSTD of the form A =∑R

r=1(Q⊗d1
1 ⊗· · ·⊗Q⊗dK

K )Gr where each Qk has orthonormal columns and Gr ∈
SVm,d where m < n elementwise. We write W = (Q⊗d1

1 ⊗ · · · ⊗Q⊗dK

K )(SVm,d).

To determine the condition number, we apply (5.2) to the PSTD. Let x =
(α, a1, . . . , aK) and A := Φ(x). Then the differential of Φ is the linear map
defined by

DΦ(x)[α̇, 0, . . . , 0] = α̇

K⊗
k=1

a⊗dk

k ,

DΦ(x)[0, . . . , 0, ȧk, 0, . . . , 0] =
(

dk∑
d=1

ȧk ⊗d a
⊗dk−1
k

)
⊗k

⊗
k′ ̸=k

a
⊗dk′
k′

 .

The tangent space to SVn,d at A is the image of DΦ(x). To express it as the
column span of a matrix, we proceed as follows. Let U(ak) be a matrix whose
columns are an orthonormal basis of Tak

Snk−1. Then TASVn,d is the span of

T
SVn,d

A :=
[

K⊗
k=1

a⊗dk

k T 1
A . . . TK

A

]
(5.10)

where T k
A := 1√

dk

(
dk∑

d=1
U(ak)⊗d a

⊗dk−1
k

)
⊗k

⊗
k′ ̸=k

a
⊗dk′
k′


for all k = 1, . . . ,K. Observe that all K + 1 blocks of TSVn,d

A have orthonormal
columns and are pairwise orthogonal by construction of Uk. Therefore, the
condition number of any PSTD can be computed using (5.2) where the blocks
in the Terracini matrix are as in (5.10). Now we can present a generalisation of
Theorem 5.1.
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Proposition 5.4. Let G = G1 + · · · + GR be a PSTD with summands in
SVm,d. For k = 1, . . . ,K, take Qk ∈ Rnk×mk with orthonormal columns and
set Ar := (Q⊗d1

1 ⊗ · · · ⊗Q⊗dK

K )Gr. Then

κSVn,d
(A1, . . . ,AR) ⩽

√
max d κSVm,d

(G1, . . . ,GR).

Similarly, for k = 1, . . . ,K, let Q̃k ∈ Rñk×mk have orthonormal columns and
Br := (Q̃⊗dk

1 ⊗ · · · ⊗ Q̃⊗dk

k )Ar for r = 1, . . . , R. If min(ñk, nk) > mk for all k,
then

κSVn,d
(A1, . . . ,AR) = κSVñ,d

(B1, . . . ,BR).

Remark 5.5. The case K = 1 is exactly Theorem 5.1. The case d1 = · · · =
dK = 1 is a statement about the PD. In this case, the proposition reads
κSn,K

(A1, . . . ,AR) = κSn,K
(G1, . . . ,GR), which is a special case of Theorem 4.14.

Proof. For each r, let Gr = αr(gr
1)⊗d1 ⊗ · · · ⊗ (gr

K)⊗dK with αr ̸= 0 and
gr

k ∈ Smk−1 for all k. Let ar
k = Qkg

r
k and define Ur

k so that [gr
k Ur

k ] ∈ Rmk×mk

is orthogonal. Construct TSVn,d

Gr
by applying (5.10) to Gr. Complete each Qk to

an orthonormal basis [Qk Q⊥
k ] of Rnk . If nk = mk, Q⊥

k is an nk×0 matrix. The
columns of U(ar

k) := [QkU
r
k Q⊥

k ] form an orthonormal basis of Tar
k
Snk−1. For

each r, these can be substituted into (5.10) applied to A1, . . . ,AR, respectively.
Similarly to the symmetric case, this gives

T
SVn,d

Ar
=
[
Tr T 1⊥

r · · · TK⊥
r

]
where Tr =

(
K⊗

k=1
Q⊗dk

k

)
T

SVm,d

Gr

and T k⊥
r = 1√

dk

(
dk∑

d=1
Q⊥

k ⊗d (ar
k)⊗dk−1

)
⊗k

⊗
k′ ̸=k

(ar
k′)⊗dk′


for each r and k. Define T = [Tr]Rr=1 and T k⊥ = [T k⊥

r ]Rr=1. Observe that these
K + 1 matrices are pairwise orthogonal since QT

kQk = 0 and ar
k ∈ spanQk.

Furthermore, note that T
SVn,d

Ar
= [T T 1⊥ · · · TK⊥] up to a column

permutation. Finally, T =
(⊗K

k=1 Qk

)
T

SVm,d

G1,...,GR
has the same singular values

as TSVm,d

G1,...,GR
by the orthogonality of all Qk. The combination of these three

observations implies that the singular values of TSVn,d

Ar
are the union of the

singular values of T, T 1⊥, . . . , TK⊥ separately. Consequently, it suffices to show
that σmin(T k⊥) ⩾ σmin(TSVm,d

G1,...,GR
)/
√
dk for each k.
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To do this, we compute the Gramian (T k⊥)TT k⊥. Define the following auxiliary
matrices:

Ak
r :=

⊗
k′ ̸=k

(ar
k′)⊗dk′ , Gk

r :=
⊗
k′ ̸=k

(gr
k′)⊗dk′ , and

Sk
r := 1√

dk

(
dk∑

d=1
Q⊥

k ⊗d (ar
k)⊗dk−1

)
.

This allows us to write T k⊥ = Sk
r ⊗k A

k
r . For all r1, r2, the inner products

between the columns of Sk
r1

and Sk
r2

are

(Sk
r1

)TSk
r2

= ⟨ar1
k , a

r2
k ⟩

dk−1
Ink−mk

= ⟨gr1
k , g

r2
k ⟩

dk−1
Ink−mk

.

Hence, if we replace the factors Sk
r in T k⊥

r by Ink−mk
⊗ (gr

k)⊗dk−1, the Gramian
remains unchanged. Similarly, (Ak

r1
)TAk

r2
= (Gk

r1
)TGk

r2
for all r1 and r2, so that

we can replace each Ak
r in T k⊥ by Gk

r . Define

T̂ k⊥ :=
[
Ink−mk

⊗ (gr
k)⊗dk−1 ⊗k G

r
k

]R
r=1 and

T̃ k⊥ :=
[
[gr

k Ur
k ]⊗ (gr

k)⊗dk−1 ⊗k G
r
k

]R
r=1 .

T̂ k⊥ is T k⊥ with the aforementioned replacements applied. Since [gr
k Ur

k ] is
orthogonal, the singular values of T̂ k⊥ and T̃ k⊥ are the same up to multiplicities
by Lemma 4.16. Hence, for the purpose of comparing singular values, we can
proceed with T̃ k⊥ instead of T k⊥.

Next, we also modify TSVm,d

G1,...,GR
. First, take the following subset of its columns:

T k :=
[

K⊗
k=1

(gr
k)⊗dk

1√
dk

(
dk∑

d=1
Ur⊥

k ⊗d (gr
k)⊗dk−1

)
⊗k G

k
r

]R

r=1

The first column of the rth block is
⊗K

k=1(gr
k)⊗dk = (gr

k)⊗dk⊗kG
k
r . Define T̃ k as

a modification of T k where these R columns are scaled up by
√
dk. Rearranging

the columns gives

T̃ k =
[

1√
dk

(
dk∑

d=1
[gr

k Ur⊥
k ]⊗d (gr

k)⊗dk−1

)
⊗k G

k
r

]R

r=1

.

Since T k is a submatrix of TSVm,d

G1,...,GR
, we have σmin(TSVm,d

G1,...,GR
) ⩽ σmin(T k).

Because of how we defined T̃ k, we also have σmin(T k) ⩽ σmin(T̃ k). From
here on, we can compare the singular values of T̃ k and T̃ k⊥ the same way as
their counterparts in the proof of Theorem 5.1. This completes the proof.
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5.5 Conclusion

In this chapter, we showed a connection between the condition numbers of
related decompositions of (partially) symmetric tensors.

The first main conclusion is that the condition number of a (partially)
symmetric tensor decomposition is invariant under symmetric orthogonal Tucker
compression if the compressed tensor does not have full multilinear rank.
Similarly to Chapter 4, this property yields an efficient method for computing
the condition number of a symmetric tensor decomposition of low rank in high
dimension: the tensor is compressed to one dimension more than its minimal
size (i.e., the multilinear rank) and the condition number is evaluated for the
compressed tensor. Compression to the minimal size conjecturally yields the
same result and certainly does not change the result by more than a constant
factor

√
D.

The second conclusion is that a rank-2 Waring decomposition has the same
condition number regardless of whether it is interpreted as a solution to the
symmetric or polyadic decomposition problem. Numerical evidence suggests
that this holds for an arbitrary number of summands. This would imply that
theoretical results about the condition number of the polyadic decomposition
such as those of Chapter 4 apply equally to the Waring decomposition. It would
also imply that every Waring decomposition is either a singular solution to both
the symmetric and polyadic decomposition problem or neither.



Chapter 6

Which constraints of a
numerical problem are
ill-conditioned?

This chapter consists of the revised text of a manuscript submitted to
Numerische Mathematik. At the time of writing, the manuscript has not
been accepted. Its preprint version is the following:

N. Dewaele and N. Vannieuwenhoven. “What part of a numerical problem is
ill-conditioned?” In: arXiv preprint arXiv:2305.11547 (2023).

The doctoral candidate derived the theoretical results and performed the
experiments. The text was written in collaboration with the coauthors.

Abstract

Many numerical problems with input x and output y can be formulated as
a system of equations F (x, y) = 0 where the goal is to solve for y. The
condition number measures the change of y for small perturbations to x.
From this numerical problem, one can derive a (typically underdetermined)
relaxation by omitting any number of equations from F . We propose a condition
number for underdetermined systems that relates the condition number of
a numerical problem to those of its relaxations, thereby detecting the ill-
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conditioned constraints. We illustrate the use of our technique by computing
the condition of two problems that do not have a finite condition number in
the classic sense: two-factor matrix decompositions and Tucker decompositions.

6.1 Introduction

Any computational problem with input x ∈ X and output y ∈ Y can be
characterised by defining a set P ⊆ X × Y containing all admissible input-
output pairs (x, y) ∈ X ×Y . From here on, we refer to P as the problem. Given
two problems P and P ′, we say that P ′ is less constrained than P or a relaxation
of P if P ⊆ P ′. The following are typical examples of numerical problems and
relaxations.

• A problem defined by a system of equations F (x, y) = 0 can be relaxed
by removing any number of equations.

• In many applications, a matrix X ∈ Rm×n of a known low rank k is
decomposed as a product X = LR where L ∈ Rm×k and R ∈ Rk×n.
In practice, this problem is usually made more constrained by imposing
structure on the tuple Y = (L,R), such as nonnegativity, orthogonality of
the columns of L, or by imposing that L contains a subset of the columns
of X [TB97; MD09]. Such decompositions are especially preferred for large
matrices of low rank [HMT11].

• For a matrix X ∈ Rm×n of rank k, computing an (arbitrary) basis of the
column space is less constrained than computing (specifically) the first k
columns of U in a singular value decomposition X = UΣV T .

• A Tucker decomposition [Tuc66] of a tensor X ∈ Rn1×···×nD of multilinear
rank (k1, . . . , kD) is a relaxation of the higher-order singular value
decomposition [Tuc66; DLDMV00a]. Similarly, computing a Tensor train
decomposition is a relaxation of the TT-SVD problem [Ose11].

We say that a problem P is identifiable if a unique (x, y) ∈ P exists for every
input x. If this y is a continuous function of x, then P is well-posed. In numerical
analysis, well-posed problems have a condition number, which measures the
local sensitivity of the output with respect to small changes in the input. The
goal of this chapter is to understand the condition number of P in relation to
the condition number of any relaxation P ′ of P. The main obstacle is that P ′

may be too unconstrained to be well-posed and have a condition number in the
usual sense.
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To elaborate the concept, consider this issue in the context of linear systems.
For m ⩽ n, equip Rm and Rn with an inner product and let A ∈ Rm×n be a
fixed matrix of rank m. Consider the system Ay = x for some input x ∈ Rm.
The sensitivity of “solving for y” can be interpreted in several ways.

0. Since the problem is not identifiable, its forward error and condition
number are left undefined.

1. We may add constraints to the system to obtain a unique solution. A
common way to do this is to minimise ∥y∥ over all y such that Ay = x
[GVL13, Section 5.5]. This more constrained problem is well-posed if A
is fixed and can be solved by y = A†x where A† is the Moore–Penrose
inverse of A.

2. We write the solution corresponding to x as a set Sx := {y |Ay = x} ⊆ Rn.
In the language of [DR14], the map x 7→ Sx is a set-valued solution map
and the forward error can be quantified in the Pompeiu–Hausdorff distance
dP H . For two subsets S, S̃ ⊆ Rn, this is defined as

dP H(S, S̃) := max
{

sup
y∈S

d(y, S̃), sup
ỹ∈S̃

d(ỹ, S)
}
,

where d(y, S̃) is the distance from y to its least-squares projection onto
S̃. One may define a condition number that measures the error in this
distance. To the best of our knowledge, this approach would be difficult
to generalise to nonlinear problems, since it is computationally infeasible
to compute the Pompeiu–Hausdorff distance for most sets.

3. As before, the solutions are sets Sx, which are (n − m)-dimensional
affine subspaces of Rn. The set of all such subspaces was called the affine
Grassmannian in [LWY21]. Since the affine Grassmannian is a Riemannian
manifold, it has an induced distance (and hence a measure of forward
error). The condition number with respect to this Riemannian distance
can be studied using the techniques of [BC13, Chapter 14].

We propose a fourth, practical alternative, which does not require the space of
solution sets to be a manifold (as in item 3) and results in a condition number
that can be computed using numerical linear algebra. In our approach, we fix
any solution y0 corresponding to the noiseless input x0. For a noisy input x, the
condition number we propose satisfies the error bound

min
y : (x,y)∈P

dY(y0, y) ⩽ κ[P](x0, y0) · dX (x0, x) + o(dX (x0, x)) as x→ x0, (6.1)

where P = {(x, y) ∈ Rm × Rn |Ay = x} and κ[P](x0, y0) is the proposed
condition number at (x0, y0). The left-hand side is the optimal forward error
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x0

x

X̂ ⊆ X

Hy0

y0 Hy0(x)

{y | F (x0, y) = c}

{y | F (x, y) = c}

Y

Figure 6.1: Simplified view of the solution sets of an FCRE. The point y0 is a
particular solution of F (x0, y) = c for the noiseless input x0 and x is a noisy
input close to x0. The point Hy0(x) is the projection of y0 onto the solution set
{y | F (x, y) = c}. If F is linear, then the solution sets are affine spaces which
are parallel to each other for all values of x.

over all values of y that solve P given x. The higher-order term o(dX (x0, x))
can be neglected if x is close to x0.

We use this approach to derive an expression of the condition number of a wide
class of problems we call feasible constant-rank equations (FCREs) and write as
F (x, y) = c for some constant c. Deferring a precise definition to Section 6.3,
FCREs can be defined informally as systems of (linear or non-linear) equations
whose solution sets are smooth1 manifolds whose points depend smoothly on
the input, generalising the linear problem above. Many problems, such as matrix
and tensor decompositions, can be modelled as FCREs, even though they are
usually not thought of as a system of equations. A fortiori, if G : Rm → Rn is
any polynomial map, the inverse problem F (x, y) := G(y)− x = 0 is an FCRE.
The error measure introduced in (6.1) is visualised for FCREs in Figure 6.1.
Our main result can be stated as follows.

Theorem 6.1 (informal version of Theorem 6.6). Let X ,Y, and Z be smooth
manifolds where X and Y have a Riemannian metric. Let c ∈ Z be any constant
and let F : X × Y → Z be a map so that the equation F (x, y) = c is an FCRE.
Finally, let (x0, y0) be any pair that solves F (x0, y0) = c. Writing P := F−1(c),

1Here and in the rest of the chapter, smooth means infinitely differentiable.
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the condition number in (6.1) is

κ[P](x0, y0) =
∥∥∥∥∥
(
∂

∂y
F (x0, y0)

)†
∂

∂x
F (x0, y0)

∥∥∥∥∥,
where ∥·∥ is the spectral norm.

The most rudimentary application of our results is the sensitivity of linear
systems. Applying Theorem 6.1 to the FCRE Ay − x = 0 gives

∥∥A†
∥∥ as the

(absolute) condition number. Note that this also the condition number of the
problem x 7→ A†x described in item 1 above [TB97, eq. 12.2].

We will show that relaxing a problem defined by an FCRE can never increase
the condition number defined in this sense. The precise statement is as follows.

Corollary 6.2. Given R : X × Ŷ → Z and S : X × Y → Z where Ŷ ⊆ Y is a
Riemannian submanifold of Y, consider the FCREs R(x, y) = ĉ and S(x, y) = c
and assume that the former is more constrained. If R(x0, y0) = ĉ for some
(x0, y0), then

κ[S−1(c)](x0, y0) ⩽ κ[R−1(ĉ)](x0, y0).

Hence, if a problem P can be relaxed to P ′, then the condition number of P ′

is a lower bound for the condition number of P. This is essentially because
relaxing a problem adds more possible solutions, so that the left-hand side of
(6.1) may decrease but not increase. This identity is useful for explaining the
condition of a problem P: if P can be relaxed to P ′, and P ′ is ill-conditioned,
then so is P . Conversely, if P is ill-conditioned but its relaxation P ′ is not, then
the additional constraints that P adds to P ′ explain the condition of P.

The simplest instance of this is again the underdetermined linear system Ay = x
with A ∈ Rm×n, whose condition number is

∥∥A†
∥∥ at any solution pair (x0, y0).

A more constrained system could introduce n −m additional equations and
be written as Ay = x where A ∈ Rn×n, the first m rows of A are A, and the
first m components of x are x. The absolute condition number of this system
is
∥∥∥A−1

∥∥∥. By the singular value interlacing theorem [HJ12, Theorem 4.3.17],∥∥∥A−1
∥∥∥ ⩾

∥∥A†
∥∥, which confirms Corollary 6.2.

Suppose that a problem P has a solution pair (x0, y0) and P ′ is a relaxation
of P. We say that P is an optimal refinement of P ′ at (x0, y0) if relaxing P to
P ′ does not decrease its condition number, i.e., κ[P ](x0, y0) = κ[P ′](x0, y0). By
the above example, if we have an underdetermined linear system Ay = x, then
imposing the constraint that ∥y∥ be minimal gives an optimal refinement. Thus,
our results justify the widespread use of this minimality constraint.
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In another example, which we elaborate in Section 6.6, we present a family of
matrices {Xε}ε∈R+ for which the computation of a singular value decomposition
Xε = UΣV T can be arbitrarily ill-conditioned, but the less constrained
orthogonal Tucker decomposition (which is the same as a singular value
decomposition, except it does not enforce Σ to be diagonal) has a near-optimal
condition number. Thus, the singular value decomposition is not an optimal
refinement of the Tucker decomposition. That is, for a perturbation of Xε, it is
possible to find a Tucker decomposition close to the decomposition of Xε, but
only if its second factor is not diagonal. We may say that the constraint that Σ
be diagonal is responsible for the difference in condition.

6.1.1 Notation

The n× n identity matrix is denoted by In. For a fixed x, we write

Fx(y) := F (x, y) and F−1
x (c) := {y | F (x, y) = c}.

We define the following manifolds: St(m,n) := {U ∈ Rm×n |UTU = In} is the
Stiefel manifold, O(n) := St(n, n) is the orthogonal group, and Rm×n

k is the
manifold of m×n matrices of rank k. The kth largest singular value of a matrix
A is σk(A). The canonical basis vectors of Rn are e1, . . . , en. The tangent space
to a manifold M at p is TpM. A generic vector in this space is denoted as ṗ.

6.1.2 Summary of contributions and outline

The main contribution of this work is an asymptotically sharp estimate for
the optimal forward error of a general FCRE. This error estimate is given by
Theorem 6.6 and Corollary 6.9, which are proved in Section 6.3.1. The advantage
of our approach is that it requires little geometric information about the solution
sets. For certain underdetermined systems, though, the solution set can be seen
as a unique point on a quotient manifold. We compare this point of view to our
approach in Section 6.4.

Another contribution is the computation of the condition number of two specific
problems of independent interest: two-factor matrix decomposition and Tucker
decomposition of tensors. They are studied in Section 6.5 and Section 6.6,
respectively. Numerical experiments for the accuracy of the error bound (6.5)
in the case of the Tucker decomposition are presented in Section 6.7.

We start with an overview of the theory of condition numbers of nonlinear
equations in the next section.
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6.2 Classic theory of condition

Rice [Ric66] defined the condition number of a map H : X → Y between metric
spaces at a point x0 ∈ X as

κ[H](x0) := lim sup
x→x0

dY(H(x0), H(x))
dX (x, x0) (6.2)

where dX and dY are the distances in X and Y, respectively. Equivalently,
κ[H](x0) is the smallest number κ such that

dY(H(x0), H(x)) ⩽ κ · dX (x0, x) + o(dX (x0, x)) as x→ x0. (6.3)

The latter property is called asymptotic sharpness of the bound (6.3). Since
(6.2) depends on H (and consequently its domain) as well as the distances dX
and dY , it is more precise to call κ[H](x0) the condition number of H with
respect to dX and dY , but we refer to it simply as the condition number of H.
Many condition numbers in the literature are instances of (6.2) for some choice
of X ,Y, and their distances. The following examples are common.

• If X and Y are normed vector spaces, there is a natural distance
dX (x, x′) := ∥x− x′∥ and likewise in Y. In this case, (6.2) is the absolute
normwise condition number κabs[H]. Alternatively, we may fix x0 and
define dX (x, x′) := ∥x− x′∥/∥x0∥ and likewise in Y. This corresponds to
the relative normwise condition number at x0 [TB97, Lecture 12].

• If X is not a linear space, then (6.2) is often referred to as a structured
condition number [HU17; ANT19]. For instance, if X ⊆ Rn×n is a manifold
of structured, orthogonal, or low-rank matrices, then (6.2) only considers
those matrices x as possible perturbations.

• If X and Y are expressed in coordinates and one is interested in
perturbations of only one coordinate, a componentwise condition number
may be used [GK93]. This is less straightforward to define as a special
case of (6.2) and will not be considered in this chapter.

We will consider general maps H where X and Y are Riemannian manifolds. In
this case, Rice’s theorem [Ric66] says that κ[H](x0) = ∥DH(x0)∥ where DH is
the differential of H and ∥·∥ is the operator norm. In particular, for a map H
between Euclidean spaces, κabs[H] is the spectral norm of the Jacobian matrix
of H, as in [TB97, Lecture 12].

Rice’s definition (6.2) can be extended to numerical problems P ⊆ X × Y
that cannot be described as a map H : X → Y, such as the solution of a
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polynomial equation
∑d

i=0 aiy
i = 0, where x = (a0, . . . , ad), ad ̸= 0, and d ⩾ 2.

Such problems may have multiple isolated solutions. Demmel [Dem87] defined a
condition number for univariate polynomial rootfinding, which was generalised
by Shub and Smale [SS93] to homogeneous polynomial systems and by Bürgisser
and Cucker [BC13, Section 14.3] to problems P ⊆ X × Y where X and Y are
Riemannian manifolds.

This extended definition of the condition number goes as follows: let the problem
P be defined by a system of equations F (x, y) = c where F : X × Y → Z is
a smooth map (meaning infinitely differentiable) and c ∈ Z is a constant.
If (x0, y0) is any solution and ∂

∂yF (x0, y0) is invertible, the implicit function
theorem implies the existence of a unique smooth map, often called the solution
map H : X̂ → Y defined on a neighbourhood X̂ ⊆ X of x0 such that H(x0) = y0
and F (x,H(x)) = c for all x ∈ X̂ . The condition number of P as discussed
in [BC13, Section 14.3] is defined as κ[F−1(c)](x0, y0) := κ[H](x0), where the
right-hand side is given by (6.2). Working this out gives

κ[F−1(c)](x0, y0) =
∥∥∥∥∥
(
∂

∂y
F (x0, y0)

)−1
∂

∂x
F (x0, y0)

∥∥∥∥∥. (6.4)

Remark 6.3. If the equation F (x, y) = c has two different solutions y0 and y′
0

for the same input x0, then their solution maps are different and may generally
have a different condition number. Hence, the condition number may depend
on the solution as well as the input.

Example 6.4 (Eigenvalue problems). Let X := Cn×n and Y = C and define
F (X,λ) := det(X − λI). The eigenvalues of X are precisely the solutions of
F (X,λ) = 0. Endow Cn with the Hermitian inner product ⟨·, ·⟩ and Cn×n

with the spectral norm. Let X0 be a matrix with a simple eigenvalue λ0 and
left and right eigenvectors v and w, respectively. A basic result in matrix
analysis states that there exists a locally unique smooth function λ(X) such
that F (X,λ(X)) = 0 and λ(X0) = λ0, see e.g. [HJ12, Theorem 6.3.12]. Its
differential at X0 is Dλ(X0)[Ẋ] = ⟨v,Ẋw⟩

⟨v,w⟩ . Hence, κ[F−1(0)](X0, λ0) = ∥v∥∥w∥
|⟨v,w⟩| .

For a generic X0, all its eigenvalues have a different condition number, as per
Remark 6.3.

6.2.1 Related work

The condition number of systems with unique solutions is well understood
[BC13]. We know of two works studying a condition number in the sense
of (6.1). First, Dedieu [Ded96] introduced the inverse condition number of a
numerical problem G : Y → X , where Y and X are Euclidean spaces. The
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expression for this condition number is equivalent to Corollary 6.9, but its
interpretation is different. Dedieu interpreted Y as the input space, X as the
output space, and was interested in measuring backward errors. Conversely,
we study the equation G(y) = x as a problem taking X → Y and consider
the forward error as in (6.5). Another occurrence of a latent condition number
is due to Vannieuwenhoven, who studied the sensitivity of the tensor rank
decomposition in its factor matrix representation [Van17]. Theorem 6.1 is a
generalisation of both of these results. Another approach for defining a condition
number of certain underdetermined systems is based on quotient manifolds. We
explain this in detail in Section 6.4.

For several problems in numerical analysis, there is a connection between
first-order sensitivity as in (6.3), the distance to the nearest ill-posed problem
[Dem87], and the convergence of iterative algorithms [SS93]. Constants appearing
in estimates of any of these measures are often called condition numbers, even if
the asymptotic sharpness of the estimate is not demonstrated. Specifically, Dégot
[Dé00] introduced a condition-like number for underdetermined homogeneous
polynomial systems that measures distance to ill-posedness. The same number
provides an error estimate of the solution, but little was said about the
asymptotic sharpness of this estimate. Dedieu and Kim [DK02] analysed a
generalised Newton method for solving the equationG(x) = 0, where rankDG(x)
is constant. The rate of convergence can be estimated in terms of

∥∥DG(x)†
∥∥, i.e.,

the expression appearing in Corollary 6.9. In the context of linear least-squares
problems of the form Ax = b, the similar expression ∥A∥

∥∥A†
∥∥ is sometimes

referred to as the condition number of A, even if this number is not the condition
number of the problem as defined by (6.2) (see e.g. [SS90, Corollary III.3.10]
and the discussion thereafter).

Another conceptually similar condition number is that of Riemannian
approximation [BV21]. In that context, the problem is to project a variable
point x ∈ Rn onto a fixed manifold M⊆ Rn. The latent condition number, by
contrast, measures how a fixed point y0 is projected onto a variable solution set
F−1

x (c).

6.3 Proposed theory of condition

The condition number in the sense of Rice is defined for the evaluation of a
map H : X → Y and for the solution of systems of equations F (x, y) = c where
∂

∂yF (x, y) is invertible. In this section, we loosen this constraint on ∂
∂yF (x, y)

and propose a corresponding condition number.
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Definition 6.5. Let X ,Y,Z be smooth manifolds and let c ∈ Z be a constant.
Let F : X × Y → Z be a smooth map. We call the equation F (x, y) = c a
feasible constant-rank equation (FCRE) if the following holds:

1. for all x ∈ X , there exists a point y ∈ Y such that F (x, y) = c,

2. there exists a number r ∈ N so that rank ∂
∂yF (x, y) = r and

rankDF (x, y) = r for all x, y ∈ X × Y.

Note that if r = dimY = dimZ, then ∂
∂yF (x, y) is invertible, which is the usual

condition under which the condition number in the sense of [BC13, Section 14.3]
is defined. Note as well that if a map F only satisfies this definition locally, the
restriction of F to a subset of its domain defines an FCRE.

The idea behind the second item in Definition 6.5 is as follows. If rankDF is
constant, then F is a map of constant rank, which is a fundamental concept
in differential geometry [Lee13, Chapter 4]. One such example are polynomial
maps: if F : Rm → Rn is a polynomial, then the locus of points p ∈ Rm such
that rankDF (p) is not maximal is a subvariety of Rm of dimension less than m.
Thus, polynomials have constant rank almost everywhere [BC13, Proposition
A.35].

For any map F of constant rank, the problem P := F−1(c) is a smooth manifold
of dimension nullDF where null is the nullity [Lee13, Theorem 4.12]. It then
follows that rank ∂F

∂y = rankDF if and only if dimP = dimX + null ∂F
∂y . This

should be compared to identifiable problems, which have only dimX degrees
of freedom (since every x ∈ X would determine a unique (x, y) ∈ P). By the
foregoing, FCREs are defined exactly by the maps of constant rank that offer
null ∂F

∂y additional degrees of freedom.

Our main theorem underlies the definition of the condition number of an FCRE.
It is proved in Section 6.3.1.

Theorem 6.6. Let F (x, y) = c be an FCRE as in Definition 6.5 and let (x0, y0)
be any pair such that F (x0, y0) = c. If X and Y are Riemannian manifolds,
then there exist a neighbourhood X̂ ⊆ X of x0 and a smooth map, called the
canonical solution map

Hy0 : X̂ → Y

x 7→ arg min
y∈Y

F (x,y)=c

dY(y0, y),
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where dY is the geodesic distance in Y. Its differential at x0 is

DHy0(x0) =
(
∂

∂y
F (x0, y0)

)†
∂

∂x
F (x0, y0).

That is, out of all possible solution maps, Hy0 locally minimises the distance to
y0. Figure 6.1 shows a visualisation of Hy0 . The preceding theorem allows us to
define our primary object of interest.

Definition 6.7. In the context of Theorem 6.6, the latent condition number of
F at (x0, y0) is

κ[F−1(c)](x0, y0) := κ[Hy0 ](x0) =
∥∥∥∥∥
(
∂

∂y
F (x0, y0)

)†
∂

∂x
F (x0, y0)

∥∥∥∥∥
where ∥·∥ is the operator norm.

Note that this is exactly the generalisation of (6.4) that would be obtained if
∂F
∂y in (6.4) were naively replaced by a pseudoinverse. The value of Theorem 6.6
is that it shows that this generalised formula has a precise interpretation: κ
expresses whether the equation F (x, y) = c has a solution close to y0 if x is a
slight perturbation of x0. If dX and dY are the geodesic distances in X and Y,
respectively, we have the following asymptotically sharp error bound:

min
y∈Y,

F (x,y)=c

dY(y0, y) ⩽ κ[F−1(c)](x0, y0) · dX (x0, x) + o(dX (x0, x)) as x→ x0.

(6.5)
Since this is a bound on the asymptotic behaviour as x→ x0, the same bound
holds for any distance d such that d(x0, x) = dX (x0, x)(1 + o(1)) as x→ x0 and
likewise for dY . For instance, if X is an embedded Riemannian submanifold of
a Euclidean space E , we may take d to be the Euclidean distance in E . Then
(6.5) gives a bound in the (more practical) Euclidean distance d.

Remark 6.8. The classic condition number of equations on manifolds, as
defined in [BC13, Section 14.3], requires a unique solution map at the given
solution pair (x0, y0). If this map does not exist or is not unique, the condition
number is either undefined or infinite by definition [BV18b]. If the classic
condition number of an FCRE is finite, the unique solution map is the map
from Theorem 6.6 and the condition number is the latent condition number.

The condition number of a relaxation of a FCRE can be used as a lower bound
for the condition number of the original FCRE, as stated in Corollary 6.2.
In other words, if a (relaxed or underdetermined) problem has a high latent
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condition number, then all ways to make it well-posed by adding constraints
will be ill-conditioned. This is the intuition behind the name latent condition
number. Corollary 6.2 is a straightforward consequence of the definition, but we
prove it here for completeness.

Proof of Corollary 6.2. Let HR and HS be the solution maps arising from the
application of Theorem 6.6 to R and S, respectively. For all x ∈ X sufficiently
close to x0, we have

dY(HS(x0), HS(x)) = min
y∈Y

S(x,y)=c

dY(y0, y).

An upper bound on this can be obtained by restricting the domain of the
minimum and applying the identity that dY(y, y′) ⩽ dŶ(y, y′) for all y, y′ ∈ Y.
Thus,

dY(HS(x0), HS(x)) ⩽ min
y∈Ŷ

R(x,y)=ĉ

dŶ(y0, y) = dŶ(HR(x0), HR(x))

so that the result follows from (6.2).

An important class of systems of equations are equations of the form G(y)−x = 0
for some smooth map G : Y → Rm. In this case, Theorem 6.6 specialises to the
following Riemannian generalisation of [Ded96, Theorem C].

Corollary 6.9. Let Y be a Riemannian manifold and let G : Y → Rm be a
smooth map such that rankDG(y) is constant. Pick any point (x0, y0) on the
graph of G. Then y0 has a neighbourhood Ŷ such that X := G(Ŷ) is an embedded
submanifold of Rm. Define

F : X × Ŷ → Rm

(x, y) 7→ G(y)− x.

Then F (x, y) = 0 is an FCRE and κ[F−1(0)](x0, y0) =
∥∥DG(y0)†

∥∥.

For a map G satisfying the assumptions in Corollary 6.9, we call the equation
G(y) − x = 0 a constant-rank inverse problem and we write κinv[G](y0) :=
κ[F−1(c)](x0, y0). The dependence on x0 is not written explicitly since x0 is
determined by y0. Note that

∥∥DG(y0)†
∥∥ is the reciprocal of the smallest nonzero

singular value of DG(y0).
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6.3.1 Proof of Theorem 6.6

The proof of Theorem 6.6 is an application of standard concepts from differential
geometry and numerical analysis. We will use the following lemma to parametrise
the tangent space to the solution sets.

Lemma 6.10. Let X ,Y,Z be smooth manifolds of dimensions m,n and
k, respectively, and let F : X × Y → Z be a smooth map. Suppose that
rank ∂

∂yF (x, y) = r is constant. In a neighbourhood of any point (x0, y0) ∈
X × Y, there exists a linearly independent tuple of smooth vector fields
((0, E1(x, y)), . . . , (0, En−r(x, y))) over X ×Y whose span is {0}×ker ∂

∂yF (x, y).

Proof. Consider the map

F̃ : X × Y → X ×Z

(x, y) 7→ (x, F (x, y)).

Then, (ẋ, ẏ) ∈ kerDF̃ (x, y) if and only if ẋ = 0 and (ẋ, ẏ) ∈ kerDF (x, y). Since
DF (x, y)[ẋ, ẏ] = ∂

∂xF (x, y)[ẋ] + ∂
∂yF (x, y)[ẏ], ẋ = 0, and ∂

∂xF (x, y) : TxX →
TF (x,y)Z is a linear map, we have

kerDF̃ (x, y) = {0} × ker ∂

∂y
F (x, y) (6.6)

and rankDF̃ (x, y) = m+ r for all x, y.

By the constant rank theorem [Lee13, Theorem 4.12], there exist charts for the
domain and codomain of F̃ in which F̃ is represented as

(u1, . . . , um+n) 7→ (u1, . . . , um+r, 0, . . . , 0).

In these coordinates, the basis B :=
{

∂
∂ui

}m+n

i=m+r+1 spans kerDF̃ (x, y). By
(6.6), we may write these ∂

∂ui as smooth vector fields (0, Ei−m−r(x, y)), where
Ei−m−r(x, y) ∈ ker ∂

∂yF (x, y).

Now we can prove the existence of the canonical solution map.

Proof of Theorem 6.6. Let n = dimY and let gY be the Riemannian metric on
Y. Let {Ei(x, y)}n−r

i=1 be the vector fields from Lemma 6.10.

By the constant rank theorem [Lee13, Theorem 4.12], there exists a
neighbourhood U ⊆ X × Y of (x0, y0) and a chart ϕZ : Z → Rdim Z
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such that ϕZ(c) = 0 and ϕZ(F (x, y)) = (F̂ (x, y), 0) for some smooth map
F̂ : U → Rr. Thus, in this neighbourhood, the equation F (x, y) = c is equivalent
to F̂ (x, y) = 0.

Let logy : Y → T yY be the inverse of the exponential map in Y. Informally,
logy y0 is the vector in TyY that “points towards” y0. Define ϕi(x, y) :=
gY(Ei(x, y), logy y0) and consider the system of n equations

Φ(x, y) := (F̂ (x, y), ϕ1(x, y), . . . , ϕn−r(x, y)) = (0, 0, . . . , 0). (6.7)

The last n− r equations specify that logy y0 is orthogonal to ker ∂
∂yF (x, y) and

thus normal to F−1
x (c). We will show, using the implicit function theorem, that

(6.7) has a locally unique solution.

Let gX ×Y be the product metric in X × Y. Then

ϕi(x, y) = gX ×Y
(
(0, Ei(x, y)), (0, logy y0)

)
.

Let (ξ, η) ∈ T (x0, y0)(X×Y) be any tangent vector and let ∇ be the Levi–Civita
connection for gX ×Y . We calculate Dϕi(x0, y0) using the product rule:

Dϕi(x0, y0)[ξ, η] = gX ×Y
(
∇(ξ,η)(0, Ei(x, y)), (0, logy0 y0)

)
+ gX ×Y

(
(0, Ei(x0, y0)),∇(ξ,η)(0, logy y0)

)
. (6.8)

The first term vanishes because logy0 y0 = 0. The second term simplifies to
gY(Ei(x0, y0),∇η logy y0). Using normal coordinates centred at y0, the vector
field logy y0 can be written as logy y0 = −

∑n
i=1 y

i ∂
∂yi , so that ∇η logy y0 = −η

[Lee13, Proposition 5.24]. Hence, (6.8) is equal to −gY(Ei(x0, y0), η).

To apply the implicit function theorem to (6.7), we verify that ∂
∂y Φ(x0, y0)

is invertible. It suffices to show that the kernel of ∂
∂y Φ(x0, y0) is trivial. If a

vector ẏ ∈ T y0Y is such that ∂
∂y Φ(x0, y0)[ẏ] = 0, then ẏ ∈ ker ∂

∂y F̂ (x0, y0) =
ker ∂

∂yF (x0, y0). Furthermore, if ∂
∂yϕi(x0, y0)[ẏ] = 0 for all i, then ẏ is orthogonal

to Ei(x0, y0) for all i. By the definition of Ei, it follows that ẏ ⊥ ker ∂
∂yF (x0, y0)

and thus ẏ = 0. Therefore, ker ∂
∂y Φ(x0, y0) = {0}. By the implicit function

theorem [Lee13, Theorem C.40], there exists a neighbourhood X̂ × Ŷ of (x0, y0)
and a smooth function Hy0 such that Φ(x, y) = 0 for (x, y) ∈ X̂ × Ŷ if and only
if y = Hy0(x).

Next, we show that Hy0(x) is the map from the theorem statement. Consider a
variable point x ∈ X̂ . By continuity of Hy0 , if x is sufficiently close to x0, then
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Hy0(x) lies in the interior of some compact geodesic ball B ⊆ Ŷ of radius ρ
around y0. Since the level set F−1

x (c) is properly embedded [Lee13, Theorem
4.12], the minimum of dy0(y) := dY(y0, y) over all y ∈ F−1

x (c) ∩B is attained.
The interior of F−1

x (c)∩B contains at least Hy0(x) and, since d(y0, Hy0(x)) < ρ,
it follows that dy0 attains a minimum in the interior of F−1

x (c) ∩B. Thus, at
the minimiser y⋆, we must have

grad d2
y0

(y) ⊥ T y⋆F
−1
x (c) = ker ∂

∂y
F (x, y⋆),

where grad d2
y0

(y) = −2 logy y0. As we established above, Hy0(x) is the unique
point that solves (6.7). In other words, it is the only y ∈ F−1

x (c) ∩ Ŷ such that
logy y0 ⊥ ker ∂

∂yF (x, y). Thus, Hy0(x) = y⋆, as required.

We obtain an expression for DHy0(x0) as follows. Since Φ(x,Hy0(x)) is constant
for all x, it follows by implicit differentiation that

∂

∂x
Φ(x0, y0) + ∂

∂y
Φ(x0, y0)DHy0(x0) = 0.

By substituting the partial derivatives of Φ obtained in the proof, we get{
∂

∂xF (x0, y0) + ∂
∂yF (x0, y0)DHy0(x0) = 0,

E∗
i (x0, y0)DHy0(x0) = 0 for all i = 1, . . . , n− r,

where ·∗ is the dual (or adjoint). In other words, DHy0(x0) is the unique matrix
that solves ∂

∂yF (x0, y0)DHy0(x0) = − ∂
∂xF (x0, y0) and has a column space or-

thogonal to ker ∂
∂yF (x0, y0). Hence, DHy0(x0) = −

(
∂

∂yF (x0, y0)
)†

∂
∂xF (x0, y0).

6.4 Problems invariant under orthogonal symmet-
ries

A notable advantage of the latent condition number of an FCRE F (x, y) = c
is that it only requires information about the local behaviour of F around
a particular solution (x0, y0). In particular, it does not require an explicit
parametrisation of all solutions in terms of (x0, y0). By contrast, for some
underdetermined systems studied in the literature, the derivation of their
condition number relies on the solutions being unique up to a known equivalence
relation [BC13; Van17].
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When it is known that the system is invariant under certain symmetries, however,
more can be said about the condition number. For instance, since the condition
number generally depends on the solution y and the parameter x, it is natural to
ask when it depends on the parameter alone. That is, when do two distinct y1, y2
that solve F (x, y) = c for the same x satisfy κ[F−1(c)](x, y1) = κ[F−1(c)](x, y2)?
An obvious sufficient condition for this is that both F and its solutions are
invariant under some family of isometries. This is captured by the following
statement.
Proposition 6.11. Let F (x, y) = c be an FCRE with F : X × Y → Z. Let
ψ : Y → Y be an isometry such that F ◦ (Id× ψ) = F . For any x, y ∈ X × Y,
we have

κ[F−1(c)](x, y) = κ[F−1(c)](x, ψ(y)).

Proof. Compute

DF (x, y) = D(F ◦ (Id× ψ))(x, y) = DF (x, ψ(y))(Id×Dψ(y))

so that ∂
∂yF (x, y) = ∂

∂yF (x, ψ(y))Dψ(y) and ∂
∂xF (x, y) = ∂

∂xF (x, ψ(y)). Since
Dψ(y) is an orthogonal matrix, applying Theorem 6.6 gives the desired result.

This proposition is useful when the solutions are determined up to certain
isometries. That is, suppose that x ∈ X is any point and {ψi}i∈I is a family
of isometries such that F = F ◦ (Id × ψi) for all i. If, for every y1, y2 where
F (x, y1) = F (x, y2) = c, there exists an i ∈ I such that y1 = ψi(y2), then the
above implies that all solutions of F (x, y) = c have the same condition number.

For several problems in numerical linear algebra, the solutions are unique up
to multiplication by an orthogonal matrix, i.e., a linear isometry. Thus, their
condition number depends only on the input by Proposition 6.11. Some examples
include:

1. Positive-semidefinite matrix factorisation: X = (Sn×n
k )+ is the set of

symmetric positive semidefinite matrices of rank k and Y = Rn×k
k . A

symmetric factorisation of X ∈ X is a solution of F (X,Y ) = 0, where
F (X,Y ) := X − Y Y T . The use of this factorisation in optimisation was
popularised by Burer and Monteiro [BM03].

2. Computation of an orthonormal basis of the kernel: X = Rm×n
k and

Y = St(n, n− k) and F (X,Y ) = 0, where F (X,Y ) := XY .

3. Computation of an orthonormal basis of the column space: if X = Rm×n
k

Y = St(m, k), then Y ∈ Y is a basis of spanX for some X ∈ X if and
only if F (X,Y ) := (Im −XX†)Y = 0.
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4. Orthogonal Tucker decomposition: see Section 6.6.

In the first three examples, the solution Y is unique up to the isometries
ψ : Y 7→ Y Q, where Q is any orthogonal matrix in O(k).

6.4.1 Comparison to the quotient-based approach

If the solutions to a problem are invariant under a known symmetry group, they
can be considered as uniquely defined points in a quotient space as opposed to
a set of many solutions. For example, consider the problem of computing the
eigenvector corresponding to a given simple eigenvalue of a matrix if A ∈ Cn×n.
Depending on the precise formulation of the problem, the solution can either
be considered a set of points in Cn or as a unique point in projective space.

For some underdetermined problems, a notion of condition has been worked out
by quotienting out symmetry group of the solution set [BC13]. The fundamentals
of this technique are recapped below. In the remainder of this section, we
investigate whether the condition number arising from this method agrees with
the latent condition number.

Suppose that F (x, y) = c is an FCRE and that there exists an equivalence
relation ∼ so that F (x, y) = F (x, y′) for all x if and only if y ∼ y′. If π : Y →
Y/∼, y 7→ [y] is the projection of a point onto its equivalence class, there exists
a unique map F̃ such that the following diagram commutes.

X × Y Z

X × (Y/∼)

F

Id×π
F̃

(6.9)

Under certain conditions, the projection map π and the metric in Y induce a
Riemannian structure on Y/∼. That is, the differential Dπ is a formal linear
map such that every smooth function G ◦ π where G is of the form Y/∼ → Z
obeys the chain rule (as in [Lee13, Theorem 4.29]) and the restriction of Dπ
to the orthogonal complement of its kernel is a linear isometry. In this case, π
is called a Riemannian submersion. For example, the orbits of certain groups
acting isometrically on X form a Riemannian manifold such that the quotient
projection is a Riemannian submersion [Lee18, Theorem 2.28].

Riemannian submersions give an alternative perspective on the system F (x, y) =
c: it can be formulated equivalently as F̃ (x, [y]) = c where the goal is to solve
for a representative of [y]. For this equation, the condition number at a point
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(x0, [y0]) is given by [BC13]:

κ[F̃ ](x0, [y0]) =
∥∥∥∥∥
(

∂

∂[y] F̃ (x0, [y0])
)−1

∂

∂x
F̃ (x0, [y0])

∥∥∥∥∥. (6.10)

This can be pulled back to a more concrete expression over the original domain
X × Y, so that the derivative over the quotient space is not explicitly needed.
Because of the way the metric in Y/∼ is defined, the above turns out to be
equal to latent condition number by the following proposition.

Proposition 6.12. Let F (x, y) = c be an FCRE, where F : X × Y → Z is
smooth. Let π : Y → Y/∼, y 7→ [y] be a Riemannian submersion such that
(6.9) commutes. Assume that ker ∂

∂yF (x, y) = kerDπ(y) and that ∂
∂[y] F̃ (x, [y])

is invertible. Then, at every (x0, y0) ∈ X × Y, we have

κ[F−1(c)](x0, y0) = κ[F̃ ](x0, [y0])

where the right-hand side is given by (6.10).

Proof. Define H0 := (kerDπ(y0))⊥ =
(

ker ∂
∂yF (x0, y0)

)⊥
. By the definition of

a Riemannian submersion, H0 is isometric to T [y0](Y/∼). Thus, we may write

∂

∂[y] F̃ (x0, [y0]) : H0 → TF (x0,y0)Z,

so that ∂
∂[y] F̃ (x, [y]) = ∂

∂yF (x0, y0)
∣∣
H0

. If A is a surjective linear map, then A†

is the inverse of the restriction of A to (kerA)⊥. Thus,(
∂

∂y
F (x0, y0)

)†

=
(

∂

∂[y] F̃ (x0, [y0])
)−1

with the identification H0 ∼= T [y0](Y/∼). In addition, ∂
∂xF (x0, y0) =

∂
∂x F̃ (x0, [y0]). Combining this with Theorem 6.6 gives the desired result.

This proposition adds a new interpretation to (6.10): the solution map X → Y/∼
has the same condition number as the canonical solution map X → Y . The main
advantage of this is that our approach does not require an explicit equivalence
relation up to which the solution is defined. That is, one only needs to know
that the problem is an FCRE. Moreover, the latent condition number applies
to more general problems, as the quotient Y/∼ is not required to be a smooth
manifold. Such situations can occur when attempting to quotient by a Lie group
that does not act freely; this is exactly what happens when viewing tensor rank
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decomposition as the problem of recovering factor matrices up to permutation
and scaling indeterminacies [Van17].

One manifold to which Proposition 6.12 can be applied is the Grassmannian
of n-dimensional linear subspaces of Rm, i.e., St(m,n)/O(n) where O(n) is
the orthogonal group. An equation F̃ (x, [y]) = c defining a point [y] on the
Grassmannian can be thought of as an underdetermined system F (x, y) = c with
outputs on St(m,n). The condition number (6.10) can be obtained by combining
Proposition 6.12 and Theorem 6.6. The same conclusion holds for a general
problem over the manifold of positive semidefinite n × n matrices of rank k,
which is sometimes identified with Rn×k

k /O(k) where Y1 ∼ Y2 ⇔ Y1Y
T

1 = Y2Y
T

2
[Jou+10].

6.5 Condition number of two-factor matrix decom-
positions

One of the most basic examples of an FCRE is the factorisation of a matrix
X of rank k as a product X = LR where L and RT have k columns. This
decomposition is used as a lift for optimisation over the set of low-rank matrices
[LKB24]. It is formally defined as follows.
Definition 6.13. The rank-revealing two-factor matrix decomposition problem
at X ∈ Rm×n

k is the inverse problem GM(L,R)−X = 0 where

GM :

Y︷ ︸︸ ︷
Rm×k

k × Rk×n
k → Rm×n, (L,R)→ LR.

Proposition 6.14. Let GM(L,R) := LR, where L ∈ Rm×k and R ∈ Rk×n

have rank k. Let σi(·) denote the ith largest singular value of its argument if
i ⩽ k and σi(·) := 0 if i > k. At every point (L,R), we have

κinv[GM](L,R) = 1√
min {σk(L)2 + σn(R)2, σm(L)2 + σk(R)2}

(6.11)

with respect to the Euclidean inner product on Rm×n and Rm×k × Rk×n. If
k < min{m,n}, then κinv[GM](L,R) = min{σk(L), σk(R)}−1.

Proof. We will derive the condition number of this problem using Corollary 6.9.
We can isometrically identify Rm×n ∼= Rmn in the Euclidean distances on both
spaces and analogously for Rm×k and Rk×n. Then,

DGM(L,R)[L̇, Ṙ] = L̇R+ LṘ ∼= [Im ⊗RT L⊗ In]︸ ︷︷ ︸
=:J

[
L̇
Ṙ

]
.



116 WHICH CONSTRAINTS OF A NUMERICAL PROBLEM ARE ILL-CONDITIONED?

It remains to compute the rth largest singular value of J , where r = rank(J).
The singular values of J are the square roots of the eigenvalues of JJT =
Im ⊗ (RTR) + (LLT )⊗ In. This matrix is a Kronecker sum and its eigenvalues
are λ+ µ where λ and µ run over all eigenvalues of RTR and LLT , respectively
[HJ10, Theorem 4.4.5]. Therefore, all singular values of J are

σ(J) =
{√

σi(L)2 + σj(R)2
∣∣∣∣ 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n

}
. (6.12)

The number of nonzero singular values of J is thus constant for all L and R of
rank k (counted with multiplicity).

By Corollary 6.9, the condition number is the reciprocal of the smallest nonzero
singular value of J . An element of (6.12) is zero if and only if both i > k and
j > k. Thus,

κinv[GM](L,R) =
(

min
i⩽k or j⩽k

√
σi(L)2 + σj(R)2

)−1
. (6.13)

Since the singular values are sorted in descending order, the minimum is attained
when i = k or j = k. If it is attained for i = k, the right-hand side of (6.13) is
(σk(L)2 + σn(R)2)−1/2. Analogously, if the minimum is attained for j = k, we
get (σm(L)2 + σk(R)2)−1/2. This concludes the general case. The expression for
the case where k < min{m,n} is obtained by substituting σm(L) = σn(R) = 0
in (6.11).

Not all two-factor decompositions of a given matrix X ∈ Rm×n
k have the same

condition number. Therefore, one may be interested in a decomposition whose
condition number is as small as possible. In the context of tensor decompositions,
the norm-balanced CPD was introduced for the same purpose [Van17]. Intuitively,
one may expect to find an optimal two-factor decomposition by computing
a singular value decomposition X = UΣV T and setting L := UΣ1/2 and
R := Σ1/2V T . This turns out to be correct, by the following lemma.
Lemma 6.15. Suppose that X = LR with L ∈ Rn×k

k and R ∈ Rk×n
k . Then

min {σk(L), σk(R)} ⩽
√
σk(X).

Proof. Let U and V be matrices whose columns are orthonormal bases of
spanX and spanXT , respectively. If we set (L̂, R̂, X̂) := (UTL,RV,UTXV ),
then the k × k matrices L̂, R̂, and X̂ have the same k largest singular values as
L,R, and X, respectively. Suppose that σk(X̂) =

∥∥∥X̂v∥∥∥ for some unit vector
v ∈ Rk, then σk(X̂) =

∥∥L̂R̂v∥∥ ⩾ σk(L̂)σk(R̂) by the Courant–Fisher theorem
[HJ10, Theorem 3.1.2]. Hence, σk(L̂) and σk(R̂) cannot both be larger than√
σk(X).
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Corollary 6.16. Let X0 ∈ Rm×n
k be any matrix and let GM be the map

from Proposition 6.14. Then, the best latent condition number of computing a
two-factor matrix factorisation is

min
L0R0=X0

κinv[GM](L0, R0) = σk(X0)−1/2.

If X0 = UΣV T is a compact singular value decomposition2, then the minimum
is attained at (L0, R0) = (UΣ1/2,Σ1/2V T ).

Remark 6.17. Corollary 6.16 should not be interpreted as saying that the
evaluation of the map X 7→ (UΣ1/2,Σ1/2V T ) is well-conditioned or that it
refines the two-factor decomposition optimally in the sense defined in the
introduction. This is clearly false, since the singular vectors of X may not even
be unique. Instead, Corollary 6.16 says that, if one is interested in a two-factor
decomposition (L0, R0) of X0 such that rank-preserving perturbations X of X0
have any decomposition close to (L0, R0), then (UΣ1/2,Σ1/2V T ) is optimal.

Corollary 6.16 connects the condition number to the distance from X ∈
X = Rm×n

k to the boundary ∂X of X . Since ∂X is the set of m × n
matrices of rank strictly less than k, the Eckart–Young theorem implies that
min

X̂∈∂X

∥∥∥X − X̂∥∥∥
2

= σk(X), which is the inverse square of the condition
number in Corollary 6.16. Consequently, the ill-posed locus, defined as the
set of (limits of) inputs where the condition number diverges, is precisely the
boundary of X . For many numerical problems, there is a connection between
the condition number and the reciprocal distance to the ill-posed locus, often
called a condition number theorem [Dem87; Blu+98]. The above shows that the
two-factor decomposition admits such a connection as well.

6.6 Condition number of orthogonal Tucker decom-
positions

As another application of the proposed theory, in this section, we study the
condition number of a different rank-revealing decomposition, this time in the
context of tensors. Given a tensor

C =
R∑

i=1
vi,1 ⊗ vi,2 ⊗ · · · ⊗ vi,D ∈ Rk1×k2×···×kD ,

2We call a singular value decomposition compact if Σ ∈ Rk×k and k = rank X0.
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where vi,j ∈ Rkj are vectors, the tensor product3 of the matrices Uj ∈
Rnj×ki , j = 1, . . . , D, acts linearly on C as

X = (U1 ⊗ · · · ⊗ UD)C =
R∑

i=1
(U1vi,1)⊗ (U2vi,2)⊗ · · · ⊗ (UDvi,D) . (6.14)

The resulting tensor X lives in Rn1×n2×···×nD . When D = 2, C is a matrix and
the above expression can be simplified to U1CUT

2 . The Tucker decomposition
problem [Tuc66] takes a tensor X as in (6.14) and asks to recover the factors
U1, . . . , UD, C . It is common to impose that all columns of Ui are orthonormal
for each i, in which case (6.14) is sometimes called an orthogonal Tucker
decomposition.

To formulate the problem more precisely, we introduce some notation. For the
above tensor C , the jth flattening is the matrix

C(j) =
R∑

i=1
vi,j · vec(vi,1 ⊗ · · · ⊗ vi,j−1 ⊗ vi,j+1 ⊗ · · · ⊗ vi,D)T ,

where vec(v1 ⊗ · · · ⊗ vD) is the Kronecker product of the vectors v1, . . . , vD.
If C is a matrix (i.e., D = 2), then C(1) = C and C(2) = C T . The multilinear
rank of C is the tuple µ(C) := (rank C(1), . . . , rank C(D)). We say that C has full
multilinear rank if µ(C) = (k1, . . . , kD). The set of such tensors is written as
Rk1×···×kD

⋆ .

Definition 6.18. The rank-revealing orthogonal Tucker decomposition problem
at X ∈ Rn1×···×nD is the inverse problem GT (U1, . . . , UD, C)− X = 0 where

GT :

Y︷ ︸︸ ︷
Rk1×···×kD

⋆ ,St(n1, k1)× · · · × St(nD, kD)→ Rn1×···×nD

(C , U1, . . . , UD) 7→ (U1 ⊗ · · · ⊗ UD)C .

The reason for considering Rk1×···×kD
⋆ in the domain rather than its closure

Rk1×···×kD is to ensure that rankDGT is constant [KL10]. If y = (C , U1, . . . , UD)
solves the orthogonal Tucker decomposition problem, then all other solutions
can be parametrised as

G−1
T (GT (y)) =

{
((Q1 ⊗ · · · ⊗QD)C , U1Q

T
1 , . . . , UDQ

T
D) | Qj ∈ O(kj)

}
.

(6.15)
3In case of unfamiliarity with the tensor product, all occurrences of ⊗ may be interpreted

as the Kronecker product of matrices and vectors.
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In the literature on multi-factor principal component analysis, these invariances
are sometimes called “rotational” degrees of freedom [KVM01].

To eliminate some degrees of freedom, it has been proposed to impose
constraints on the core tensor C . For instance, one could optimise a measure
of sparsity on C to enhance the interpretability of the decomposition [KVM01;
MVL08]. Alternatively, the higher-order singular value decomposition (HOSVD)
[DLDMV00a] imposes pairwise orthogonality of the slices of C . The HOSVD
has the advantages of being definable in terms of singular value decompositions
and giving a quasi-optimal solution to Tucker approximation problems [Hac12,
Theorem 10.3]. It is unique if and only if the singular values of all X(i) are simple
for all i.

However, for these constrained Tucker decompositions, important geometric
properties of the set of feasible values of C remain elusive. For the HOSVD, it
remains unknown precisely what sets of singular values of the flattenings C(i)
are feasible [HU17]. Furthermore, for two tensors C , C ′ with HOSVD constraints,
the singular values of C(i) and C ′

(i) may be identical for all i even if C and C ′

are in distinct O(k1)× · · · ×O(kD)-orbits [HU17]. For these reasons, we ignore
the constraints to make the orthogonal Tucker decomposition (usually) unique
and study the underdetermined problem of Definition 6.18 instead.

To determine the condition number, we need a Riemannian metric for the
domain and codomain of GT . A simple metric is the Euclidean or Frobenius
inner product, which is defined on (the tangent spaces of) Rn1×···×nD , Rk1×···×kD

⋆ ,
and St(ni, ki) ⊂ Rni×ki . Thus, we may use the associated product metric for Y .
We call this metric of Y and the Euclidean inner product in Rn1×···×nD absolute
(Riemannian) metrics. The norm induced by these metrics is the Euclidean or
Frobenius norm, which we denote by ∥·∥F .

Since the Stiefel manifold is bounded in the Euclidean metric and Rk1×···×kD
⋆ is

not, it may be more interesting to work with relative metrics. For a punctured
Euclidean space E\{0} with inner product ⟨·, ·⟩, the relative metric for two
vectors ξ, η ∈ T pE is ⟨ξ,η⟩

⟨p,p⟩ . Note that this defines a smooth Riemannian metric.
We lift this definition so that the relative metric in Y is the product metric
of the relative metric in Rk1×···×kD

⋆ and the Frobenius inner products on all
St(ni, ki).

Proposition 6.19. Let (U1⊗· · ·⊗UD)C be an orthogonal Tucker decomposition
of a tensor X ∈ Rn1×···×nD such that C ∈ Rk1×···×kD

⋆ and ki < ni for at least
one i. Let σ := mini: ki<ni

σki
(C(i)). Then,

1. κinv[GT ](C , U1, . . . , UD) = max
{ 1

σ , 1
}

for the absolute metric, and
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2. κinv[GT ](C , U1, . . . , UD) = ∥X ∥F

σ for the relative metric.

Proof. Throughout this proof, we abbreviate DGT (C , U1, . . . , UD) to DGT .
Following Corollary 6.9, we compute the smallest nonzero singular value of
DGT for both metrics. The proof consists of a construction of this matrix with
respect to an orthonormal basis and a straightforward calculation of its singular
values. To use the same derivation for the two metrics, we let α = 1 for the
absolute metric and α = ∥C∥F = ∥X∥F for the relative metric.

For all i, let {Ωj
i | 1 ⩽ j ⩽ 1

2ki(ki − 1)} be an orthonormal basis of the
ki×ki skew-symmetric matrices. Let U⊥

i ∈ St(ni, ni−ki) be any matrix so that
[Ui U⊥

i ] is orthogonal. If ni = ki, we write U⊥
i formally as an ni×0 matrix. Let

{V p
i | 1 ⩽ p ⩽ (ni−ki)ki} be a basis of R(ni−ki)×ki . Then, Bi := {UiΩj

i +U⊥
i V

p
i }

forms an orthonormal basis of T UiSt(ni, ki). If {El | 1 ⩽ l ⩽
∏D

i=1 ki} is the
canonical basis of Rk1×···×kD , then B0 := {αEl} is an orthonormal basis of
Rk1×···×kD . The product of these bases gives a canonical orthonormal basis for
Y.

Similarly, an orthonormal basis of Rn1×···×nD is {αÊj} where the Êj are the
canonical basis vectors of Rn1×···×nD . In other words, expressing a vector in
orthonormal coordinates is equivalent to division by α.

Next, we compute the differential of GT . For general tangent vectors Ċ ∈
T CRk1×···×kD

⋆ and U̇i ∈ T UiSt(ni, ki), we have, in coordinates,

DGT [Ċ , 0, . . . , 0] = α−1(U1 ⊗ · · · ⊗ UD)Ċ and

DGT [0, . . . , U̇i, . . . , 0] = α−1(U1 ⊗ · · · ⊗ Ui−1 ⊗ U̇i ⊗ Ui+1 ⊗ · · · ⊗ UD)C ,

which is extended linearly for all tangent vectors. The condition that UT
i U

⊥
i = 0

for all i splits the image of DG into pairwise orthogonal subspaces. That is, for
any i and k, DGT [0, . . . , U⊥

i V
p

i , . . . , 0] is orthogonal to both DGT [Ċ , 0, . . . , 0]
for all Ċ and DGT [0, . . . , U̇i′ , . . . , 0] for all U̇i′ where i′ ̸= i.

To decompose the domain of DGT as a direct sum of pairwise orthogonal
subspaces, we write T UiSt(ni,mi) = Wi⊕W⊥

i for all i, whereWi := span{UiΩj
i}

and W⊥
i = span{U⊥

i V
p

i }. The restriction of DGT to TCRk1×···×kD
⋆ ×W1×· · ·×

WD can be represented in coordinates by a matrix J0. Likewise, for i = 1, . . . , D,
we write the restriction of DGT to {0} × · · · ×W⊥

i × · · · × {0} in coordinates
as Ji. Then DGT can be represented as J =

[
J0 J1 . . . JD

]
.

By the preceding argument, these D + 1 blocks that make up J are pairwise
orthogonal. Therefore, the singular values of J are the union of the singular
values of J0, . . . , JD. If ni = ki for some i, then Ji is the matrix with zero
columns, whose singular values are the empty set.
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Let Π :=
∏D

i=1 kD. To bound the singular values of J0, we compute its first Π
columns as DGT [αEl, 0, . . . , 0] = (U1 ⊗ · · · ⊗ UD)El for all l = 1, . . . ,Π. Note
that all other columns have a factor (U1 ⊗ · · · ⊗ UD) as well. Thus, we have

J0 = (U1 ⊗ · · · ⊗ UD)
[
IΠ J̃

]
,

where J̃ is an unspecified matrix. We can omit the orthonormal factor U1 ⊗
· · ·⊗UD when computing the singular values of J0. Therefore, J0 has Π nonzero
singular values, which are the square roots of the eigenvalues of IΠ + J̃ J̃T . It
follows that the Π largest singular values of J0 are bounded from below by 1
and all other singular values of J0 are 0.

Next, consider any Ji where i ⩾ 1 and ni > ki. It represents the linear map

Ji : V 7→ α−1(U1 ⊗ · · · ⊗ Ui−1 ⊗ U⊥
i V ⊗ Ui+1 ⊗ · · · ⊗ UD)C .

Up to reshaping, the above is equivalent to

Ji : vecV 7→ α−1
(
U⊥

i ⊗ ((U1 ⊗ · · · ⊗ Ui−1 ⊗ Ui+1 ⊗ · · · ⊗ UD)C T
(i))
)

vecV.

To calculate the singular values of Ji, we factor out U⊥
i and all Uj to obtain

Ji
∼= α−1Ini−ki

⊗ C T
(i). Its singular values are the singular values of α−1C(i) with

all multiplicities multiplied by ni − ki.

Finally, we show geometrically that the smallest nonzero singular value ς of
DGT is at most 1. By the Courant–Fisher theorem, ς ⩽ ∥DGT [ξ]∥/∥ξ∥ for all
ξ ∈ ker(DGT )⊥\{0}. Pick ξ := (0, . . . , 0, C). Since

G−1
T (X ) =

{
((Q1 ⊗ · · · ⊗QD)C , U1Q

T
1 , . . . , UDQ

T
D) | Qi ∈ O(ki)

}
,

the projection of G−1
T (X ) onto the first component is a submanifold of the sphere

over Rk1×···×kD of radius ∥C∥F . It follows that

ξ ∈ N(C ,U1,...,UD)G
−1
T (X ) = (kerDGT )⊥,

where N denotes the normal space. Since DGT [ξ] = (U1⊗· · ·⊗UD)C , we obtain
ς ⩽ ∥DGT [ξ]∥/∥ξ∥ = 1.

In conclusion, we have established the following three facts. First, for all i such
that ki < ni, all singular values of α−1C(i) are singular values of DGT . Second,
any other nonzero singular values of DGT must be bounded from below by 1.
Third, the smallest nonzero singular value of DGT is at most 1. By Corollary 6.9,
this proves the statement about the absolute metric. For the relative metric,
note that σ ⩽ ∥C∥F = ∥X∥F = α for all i. Thus, the smallest nonzero singular
value of DGT is σ/α = σ/∥X∥F ⩽ 1.
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The expression for the absolute metric can be interpreted as follows: if ki < ni

and σ(i) := σki
(C(i)) is small, then the factor Ui is sensitive to perturbations of X .

Indeed, assume that the last column of Ui is a left singular vector corresponding
to the singular value σ(i). Then, we can generate the following small perturbation
of X that corresponds to a unit change in the decomposition. Let Ũi be a matrix
such that Uiej = Ũiej for 1 ⩽ j < k1 and UT

i Ũieki
= 0. The perturbed tensor

X̃ = GT (C , U1, . . . , Ud−1, Ũi, Ud+1, . . . , UD) is only at a distance σ(i) away from
X .

On the other hand, if σ ⩾ 1, then no unit perturbation of X tangent to GT (Y)
can change the orthogonal Tucker decomposition more than the tangent vector
∆X = X/∥X∥F constructed in the proof of Proposition 6.19.

Remark 6.20 (Condition number of a singular value decomposition). For
a matrix X, computing an orthogonal Tucker decomposition of the form
X = U1SU

T
2 is a relaxation of the singular value decomposition that does not

impose a diagonal structure on S. A condition number for the subspaces spanned
by the singular vectors was studied in [Sun96; Van23]. The condition number
for the ith singular vector diverges as |σi(X)− σi+1(X)| → 0. By contrast,
the condition number of computing an orthogonal Tucker decomposition
depends on σk1(X) and ∥X∥F only. Thus, computing individual singular
vectors may be arbitrarily ill-conditioned even if the condition number of
the Tucker decomposition is arbitrarily close to one. For instance, this occurs
for the 3× 3 diagonal matrix X whose diagonal elements are (1 + ε, 1, 0) and
0 < ε≪ 1. Informally, this observation shows that restricting S to be diagonal
in an orthogonal Tucker decomposition can make computing the resulting
singular value decomposition arbitrarily more ill-conditioned than computing
an orthogonal Tucker decomposition.

6.7 Numerical verification of the error estimate

Eq. (6.5) is only an asymptotic estimate of the optimal forward error. A common
practice for working with condition numbers is to neglect the asymptotic term
o(dX (x0, x)) and turn (6.5) into the approximate upper bound

min
y∈Y,

F (x,y)=c

dY(y0, y) ≲ κ[F−1(c)](x0, y0) · dX (x0, x). (6.16)

In this section, we determine numerically if this approximation is accurate
for random initial solutions (x0, y0) and random perturbations x. We restrict
ourselves to the orthogonal Tucker decomposition of third-order tensors.
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6.7.1 Model

The model is defined as follows. We pick a parameter α > 0 to control the
condition number. We generate matrices A,B ∈ Rk×(k−1) and a tensor H ∈
Rk×k×k with i.i.d. standard normally distributed entries. Then, we set C ′ ∈
Rk×k×k so that C ′

(1) = (ABT + αI)H(1) and normalise C0 := C ′/∥C ′∥F . Finally,
we generate the factor U0

i by taking the Q-factor in the QR decomposition of a
normally distributed ni × k matrix, for i = 1, 2, 3. To the above matrices and
tensor, we associate the Tucker decomposition X0 = GT (C0, U

0
1 , U

0
2 , U

0
3 ). In the

following, we abbreviate κ := κinv[GT ](C0, U
0
1 , U

0
2 , U

0
3 ). Note that choosing a

small value of α generally makes the problem ill-conditioned by Proposition 6.19.

The condition number measures the change to the decomposition for feasible
perturbations of X0 ∈ Rn1×n2×n3 . That is, the perturbed input is a point X in
the image of GT . Such a point can be generated by first perturbing X0 in the
ambient space Rn1×n2×n3 as X ′ := X0 + ε∆X where ∆X is uniformly distributed
over the unit-norm tensors in Rn1×n2×n3 and ε > 0 is some parameter. Then, a
feasible input can be obtained by applying the ST-HOSVD algorithm [VVM12]
to X ′ with truncation rank (k, k, k). This gives a quasi-optimal projection X of
X ′ onto the image of GT and a decomposition X = GT (C , U1, U2, U3).

6.7.2 Estimate of the optimal forward error

Since ∥X0∥F = ∥C0∥F = 1, the absolute and relative metric in Proposition 6.19
coincide, and they both correspond to the product of the Euclidean inner
products in Rk1×k2×k3 and all St(ni, ki). By (6.15), the orthogonal Tucker
decomposition of X is determined up to a multiplication by Q1, Q2, Q3 ∈ O(k).
Thus, the square of the left-hand side of (6.16) is4

E2 := min
Q1,Q2,Q3∈O(k)

{∥∥C0 − (QT
1 ⊗QT

2 ⊗QT
3 )C

∥∥2
F

+
3∑

i=1

∥∥U0
i − UiQi

∥∥2
F

}
.

(6.17)
Determining the accuracy of (6.16) requires evaluating E numerically. Since
we are not aware of any closed-form expression of E, we approximate this by
solving the above optimisation problem using a simple Riemannian gradient
descent method in Manopt.jl [Ber22]. In the following, Ê2 denotes the numerical
solution to (6.17).

4Although the definition of the condition number uses the geodesic distance dγ , the
following expression uses the Euclidean distance dE . However, it can be shown that for a
point x0 ∈ X where X is a Riemannian submanifold of Euclidean space, we have dE(x0, x) =
dγ(x0, x)(1 + o(1)) as x → x0.
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Assuming that Ê is an accurate approximation of E, we check (6.16) by verifying
that Ê ≲ κ∥X − X0∥F . A priori, there are at least two scenarios in which this
may fail to be a tight upper bound:

1. The tolerance of the gradient descent method that computes Ê is 5×10−8,
so that the numerical error in computing E is about the same order of
magnitude. If E ≪ 10−8, then Ê is probably a poor approximation of E.

2. E cannot be much larger than 1. Since St(ni, k) is a subset of the ni × k
matrices with Frobenius norm equal to

√
k, we have

∥∥U0
i − Ui

∥∥
F
⩽ 2
√
k.

Furthermore, since ∥C∥F = ∥X∥F and ∥C0∥F = ∥X0∥F = 1, it follows from
the triangle inequality that ∥C − C0∥F ⩽ 1+∥X∥F . Thus, if κ∥X − X0∥F ≫
1, this would overestimate E.

For these reasons, we are only interested in verifying the estimate Ê ≲
κ∥X − X0∥F if Ê ⩾ 5× 10−8 and κ∥X − X0∥F ⩽ 1.

6.7.3 Experimental results

We generated two datasets as specified by the model above. In the first dataset,
we used the parameters k = 3 and (n1, n2, n3) = (5, 5, 5). For each pair
(α, ε) ∈ {10−8, 10−4, 1} × {10−14, 10−12.5, . . . , 10−2}, we generated 2000 Tucker
decompositions and perturbations and measured the error. The second dataset
was generated the same way, the only difference being that n1 = 2000.

Since the condition number depends only on C0, the distribution of the condition
number is the same for both datasets. We found that κ is approximately equal
to 10/α, with 1 ⩽ κα ⩽ 100 in 94.5% of samples. The empirical geometric mean
of κα is about 12. This means that we can roughly control the condition number
of the sampled tensor by controlling the parameter α.

Figure 6.2 shows the distribution of Ê/κ∥X − X0∥F for both datasets. The
smaller this quantity, the more pessimistic κ∥X − X0∥F is as an estimate of
the forward error for random perturbed tensors X . In most cases displayed
on Figure 6.2, Ê is at least a fraction 0.1 of its approximate upper bound
κ∥X − X0∥F . In the case where 2000 = n1 ≫ k = 3, we have Ê ≈ 0.5κ∥X − X0∥F .
These experiments indicate that the approximation E ≲ κ∥X − X0∥ is reasonably
sharp on average.

The estimate E ≲ κ∥X − X0∥ could be sharpened by using a stochastic condition
number, which estimates the forward error corresponding to uniform random
perturbations X on a sphere around X0 rather than worst-case perturbations. It
was shown in [Arm10] that the stochastic condition number of a map H : X → Y
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could be as low as κ/
√

dimX where κ is the condition number. The idea is that
there may only be one bad perturbation direction in X , which is unlikely to
manifest in practice if X is high-dimensional. In our case, though, the error
is empirically closer to the worst case in the high-dimensional experiment
(n1 = 2000) than in the low-dimensional one (n1 = 5). This is evidence that, for
the decomposition of large tensors of low multilinear rank, the ill-conditioned
perturbation directions fill up more of the space. A full stochastic analysis is
beyond the scope of this thesis.

Figure 6.2: Distribution of Ê
κ∥X −X0∥F

for a Tucker decomposition of the perturbed
tensor X . An estimate of the probability density is plotted for all combinations
of (α, ε) such that 90% of samples satisfy Ê ⩾ 5 × 10−8 and 90% of samples
satisfy κ∥X − X0∥F ⩽ 1.

6.8 Conclusion

In this chapter, we proposed a theory of condition for a general class of
(potentially underdetermined) systems of equations, which we call FCREs.
The latent condition number measures the asymptotic behaviour in the error
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in a least-squares sense. Specifically, the latent condition number estimates
the smallest change in the solution for the worst possible perturbation. Our
definition is an extension of an earlier definition based on a quotient-based
formulation of the problem.

The proposed theory can be used to explain why a system of equations is ill-
conditioned: if a problem P can be relaxed to a less constrained problem P ′ that
has a high latent condition number, this gives a lower bound for the condition
number of P. In other words: if solving P requires solving an ill-conditioned
relaxation P ′, then P is ill-conditioned.

The expression for the condition number can be simplified for the problems
of two-factor matrix decomposition and Tucker decomposition. In both cases,
the condition number can be expressed in terms of the singular values of
(matrix unfoldings of) the factors. This confirms the common intuition that
the decomposition problem is ill-conditioned insofar as the factors have a small
singular value.



Chapter 7

Which variables of a numerical
problem are ill-conditioned?

This chapter consists of my own original work. It has not been submitted as
a separate article.

Abstract

In the previous chapter, we looked at systems of equations F (x, y) = c
and formulated a concept of condition that is applicable to underdetermined
systems. This allowed us to quantify which equations in the system cause the
problem to be ill-conditioned. In this chapter, we build on the theory from
the previous chapter to answer a dual question: if y = (y1, . . . , yn) is a tuple
of several variables, how sensitive is each component yi to perturbations in x?
In conjunction with Chapter 6, the results of this chapter make it possible to
isolate the constraints of the system F (x, y) = c that make it ill-conditioned,
as well as the solution variables y1, . . . , yn that cause those constraints to be
ill-conditioned.

127
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7.1 Introduction

All numerical problems we have studied thus far involve an input variable x and
a solution variable y whose relationship can be expressed by a known equation,
say F (x, y) = c. However, not all interesting problems come in this form,
especially those involving hidden variables. This means that the equation that is
to be solved contains unknown variables z which are neither the input x nor the
solution y. That is, we have an equation F (x, y, z) = c where F : X×Y×Z →W
is any map, x ∈ X is given and a value of y ∈ Y is needed such that F (x, y, z) = c
for some z ∈ Z.

To define a condition number that expresses the sensitivity of y with respect to
x and is consistent with existing theory of condition, one may consider one of
following two avenues:

• Algebraic approach: We attempt to convert the equation F (x, y, z) = c

into an equivalent equation F̃ (x, y) = c′. That is, F (x, y) = c′ if and only
if there exists a value of z such that F (x, y, z) = c. If F is linear, such
an equation F̃ can be found by Gaussian elimination. If F is polynomial,
the same can be achieved with symbolic algorithms based on Gröbner
bases [CLO07, Chapter 2]. Then the existing theory of condition such
as that of Chapter 6 can be applied to the equation F̃ (x, y) = c′. A
disadvantage of this approach is that the relationship between F and F̃
may be complicated in general.

• Geometric approach: We can describe the given equation geometrically as
its graph P := F−1(c) ⊆ X × Y × Z. The variable z can be eliminated
out of the equation by projecting P onto X ×Y . The connections between
this viewpoint and the algebraic one are central to elimination theory
[CLO07, Chapter 3]. Then the usual theory of condition can be applied
to the projection πX ×Y(P), assuming that defining equations for this set
can be found.

The geometric perspective provides a straightforward extension to the prior
theory of condition if the projection of P onto X is an immersion. In this case,
it follows from the results in Section 2.3 (specifically Lemma 2.8) that every
point x ∈ X that is sufficiently close to x0 corresponds to a (locally) unique
pair (y, z) that solves F (x, y, z) = c. Put simply, y and z would be functions of
x. In this case, the condition number of solving for y would be unambiguously
defined as the condition number of the map x 7→ y. More formally, one would
define the following.
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Definition 7.1 (special case of Definition 7.4). Let F : X × Y × Z → W
be a smooth map between Riemannian manifolds and assume that a level set
P := {(x, y, z) |F (x, y, z) = c} is an embedded submanifold of X ×Y×Z. If the
projection πX : P → X has a local inverse π−1

X at (x0, y0, z0) ∈ P , the condition
number of y at (x0, y0, z0) is

κx 7→y[P](x0, y0, z0) := κ[πY ◦ π−1
X ](x0, y0, z0).

Whilst this would be a natural extension of the known theory (Chapter 2) and it
is probably known to the experts, I have not found this concept in the literature.

The above definition is not applicable if solving for (y, z) is an underdetermined
problem, i.e., if every x ∈ X corresponds to a positive-dimensional manifold
of points (y, z) ∈ Y × Z which all solve F (x, y, z) = c. Since the previous
chapter showed the usefulness of the condition number of underdetermined
problems, we would be remiss to limit our study to only those problems where
the straightforward definition 7.1 applies. Therefore, the focus of this chapter is
to formulate a theory of condition for equations F (x, y, z) = c where (y, z) is
not assumed to be locally unique given x. The problems we consider for this
are the following variant of the FCRE model.

Definition 7.2. Let F : X × Y × Z → W be a smooth map and let c be a
constant in the image of F . Suppose that

• rankDF (x, y, z) = rank ∂
∂(y,z)F (x, y, z) = r everywhere for some r ∈ N,

• rank ∂
∂zF (x, y, z) = k everywhere for some k ∈ N.

Then the equation F (x, y, z) = c is a constant-rank elimination problem (CREP).
The spaces X and Y are the input and output space, respectively.

If we apply the geometric approach to assigning a condition number to CREPs,
one issue is that an understanding of the geometry of P := F−1(c) in a
neighbourhood of a point (x0, y0, z0) ∈ P may not suffice in order to describe
the local geometry of πX ×Y(P) at (x0, y0). For example, the projection of a
smooth manifold may be singular, as illustrated by the examples of [Smi+00,
§7.1].

For this reason, we define the condition number in terms of the projection
of a neighbourhood of a solution tuple (x0, y0, z0). This leads to the following
theorem (which is proven in Section 7.3) and corresponding definition.

Theorem 7.3. Let F (x, y, z) = c be a CREP with F : X ×Y ×Z →W and let
(x0, y0, z0) be a solution. Then for sufficiently small neighbourhoods X̂ , Ŷ, and
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x0

x

X̂ ⊆ X

solve
for (y, z)

Y

(y0, z0)

(H(x), z0)

{(y, z) | F (x0, y, z) = c} {(y, z) | F (x, y, z) = c}

Z

Figure 7.1: Solution sets of a CREP and the canonical solution map H. Given
an exact and perturbed input x0 and x, the solution sets for both inputs are
subsets of Y × Z (in this case, curves). For sufficiently small neighbourhoods
Ẑ ⊆ Z of z0, the solution map can be visualised as follows. For a time parameter
t ⩾ 0, define the cylinder C(t) := B(t)× Ẑ where B(t) is the closed disc around
y0 of radius t. Let t increase from 0 until C(t) touches the solution set of x at
some point (y, z). The y-coordinate of this unique point is H(x) by definition.
Projecting the right side of the figure onto Y retrieves the FCRE model.

Ẑ of x0, y0, and z0, respectively, the set

P̃ :=
{

(x, y) ∈ X̂ × Ŷ
∣∣∣∃z ∈ Ẑ : F (x, y, z) = c

}
(7.1)

is the zero set of some FCRE F̃ (x, y) = 0 where F̃ : X̂ × Ŷ → Rdim (X ×Y).
Moreover, if Y is Riemannian, then the derivative of the canonical solution
map of P̃ at x0, as defined by Theorem 6.6, is the unique matrix DH(x0) that
satisfies the linear system{

(ẋ, DH(x0)[ẋ]) ∈ DπX ×Y [kerDF ] for all ẋ ∈ Tx0X
spanDH(x0) ⊥ DπY

[
ker ∂F

∂(y,z)

] (7.2)

in which all derivatives are evaluated at (x0, y0, z0) or its projections.

This theorem is visualised in Figure 7.1, for the specific case where ∂F
∂z has

full rank. If dimZ > 1 and ∂F
∂z does not have full rank, the solution sets

{(y, z) |F (x, y, z) = c} have a higher dimension than their projections onto Y.

The preceding theorem ensures that we may define the condition number of
CREPs in terms of the condition number from Chapter 6.

Definition 7.4. If F (x, y, z) = c is a CREP whose input and output space are
Riemannian manifolds and (x0, y0, z0) is any solution, the condition number of
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y in F−1(c) is
κx 7→y[F−1(c)](x0, y0, z0) := κ[P̃](x0, y0),

where the right-hand side is the condition number from Definition 6.7 applied
to (7.1). The condition number of z is defined by reversing the roles of y and z.
That is, if F (x, z, y) = c is a CREP where F : (x, z, y) 7→ F (x, y, z), then

κx 7→z[F−1(c)](x0, y0, z0) := κx7→z[F−1(c)](x, z, y).

By Theorems 6.6 and 7.3, the condition number in Definition 7.4 is equal to the
operator norm of DH(x0), i.e., the matrix defined by (7.2). Section 7.4 gives
two ways of computing DH(x0) that are more concrete than (7.2).

Similarly to (6.5), the condition number bounds the optimal forward error as

min
y∈Y, z∈Ẑ

F (x,y,z)=c

d(y0, y) ⩽ κx 7→y[F−1(c)](x0, y0, z0) · d(x0, x) + o(d(x0, x)) (7.3)

where Ẑ is some neighbourhood of z0. The left-hand side can be interpreted as
the optimal forward error d(y0, y) that can be attained with a solution (y, z)
close to (y0, z0). It should be noted that closeness to z0 is defined topologically
rather than metrically and that a distance on Z is not required to define the
condition number. Whilst this may seem unintuitive, this is ultimately because
the condition number is a local (infinitesimal) property of the CREP and because
measuring errors the z-coordinate is irrelevant by assumption. Visually, we can
picture the solution curve of F (x, y, z) = c on Figure 7.1 as merging into the
solution curve of F (x0, y, z) = c as x approaches x0. The distance we keep track
of (i.e., the left-hand side of (7.3)) is measured only in the y-coordinate.

In the previous chapter, we established that if one removes constraints from
an FCRE, the condition number of this less constrained problem is a lower
bound for the condition number of the original problem. In this chapter, we
are not interested in solving a subset of the equations, but rather in solving for
a subset of the variables. This raises a natural question: if we solve a system
F (x, y, z) = c for y, is this a more well-conditioned problem than solving for y
and z combined? The answer is affirmative, as the following proposition shows.

Proposition 7.5. Let F (x, y, z) = c be a CREP with a Riemannian input and
output space and a solution (x0, y0, z0). Consider the equation F (x, (y, z)) = c
with output space Y ×Z, where F is defined by F (x, (y, z)) := F (x, y, z). Endow
X ,Y, and Z with a Riemannian metric and Y × Z with the product metric.
Then, at any solution (x0, y0, z0), we have

κx 7→y[F−1(c)](x0, y0, z0) ⩽ κ[F−1(c)](x0, y0, z0). (7.4)
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This result, which is proven in Section 7.3, can be used to determine which
solution variables of a system of equations are the most sensitive to perturbations.
If the ratio between right-hand side and the left-hand side of (7.4) is large, then
y is a part of the solution (y, z) that is relatively insensitive to small changes in
x (compared to the full solution (y, z) of F (x, (y, z)) = c).

The remainder of the chapter is organised as follows. In Section 7.2, we define a
purely geometric criterion for recognising that a problem can be defined by an
FCRE. Then, in Section 7.3, we use this criterion to prove the results stated in
the introduction. Section 7.4 shows how to compute the condition number using
numerical linear algebra. Finally, Section 7.5 gives a concrete expression for the
condition number of computing one of the factors in a Tucker decomposition.

7.2 Geometric characterisation of FCREs

The goal of this section is to find an alternative definition of problems defined by
an FCRE that does not reference any defining equations. This is useful because
Definition 7.4 involves a projection of the graph of a CREP F (x, y, z) = c onto
the x and y variables. Although we do not have access to the equations of
this projected problem, it can still be verified geometrically that the projected
problem can be defined by an FCRE and has a condition number in the sense
of Chapter 6.

Proposition 7.6. Let F : X × Y → Z be a smooth map of constant rank and
let P be any non-empty level set of F . Then the following three statements are
equivalent:

1. rankDF (x, y) = rank ∂
∂yF (x, y) for all (x, y), i.e., F defines an FCRE,

2. dimP = dimX + null ∂
∂yF (x, y) for all (x, y),

3. the projection πX : P → X is a smooth submersion.

Proof. We will show the following implications: (1) ⇔ (2), (1) ⇒ (3), and
(3) ⇒ (2). For ease of notation, all derivatives in this proof are implicitly
evaluated at an arbitrary point (x, y).
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For (1)⇔ (2), we use the fact that dimP = nullDF where null is the nullity
[Lee13, Theorem 5.12]. Applying the rank-nullity theorem gives:

dimP = nullDF = dimX + dimY − rankDF

= dimX + null ∂F
∂y

+ rank ∂F
∂y
− rankDF,

from which it follows that (1)⇔ (2).

To show (1)⇒ (3), we write the tangent space to P at a general (x, y) as

T(x,y)P = kerDF (x, y) =
{

(ẋ, ẏ)
∣∣∣∣ ∂F (x, y)

∂x
ẋ+ ∂F (x, y)

∂x
ẏ = 0

}
.

Since rankDF = rank ∂F
∂y and Im ∂F

∂y ⊆ ImDF , it follows that V := Im ∂F
∂y =

ImDF . Pick any right inverse
(

∂F
∂y

)RI

: V → TyY of ∂F
∂y , i.e., ∂F

∂y ◦
(

∂F
∂y

)RI

=

IdV . For any ẋ ∈ TxX , the vector ẏ = −
(

∂F
∂y

)RI
∂F
∂x ẋ is well-defined because

∂F
∂x ẋ ∈ V . It can be verified that (ẋ, ẏ) ∈ T(x,y)P. Hence, DπX is surjective.

Finally, we prove (3) ⇒ (2). Since DπX is surjective, it has a right inverse
DπRI

X : TxX → T(x,y)P. That is, for any ẋ ∈ TxX , the vector DπRI
X (ẋ) is a

tuple (ẋ, ẏ) ∈ kerDF for some ẏ ∈ TyY. Hence, T(x,y)P = kerDF contains at
least the set

W :=
{

(ẋ, DπY
(
DπRI

X ẋ
)

+ v)
∣∣∣∣ ẋ ∈ TxX , v ∈ ker ∂F

∂y

}
.

It is straightforward to check that W is the image of the injective linear map
(ẋ, v) 7→ (ẋ, DπY

(
DπRI

X ẋ
)

+ v). Hence, W is a (dimX + null ∂F
∂y )-dimensional

linear subspace of T(x,y)P.

We complete the proof by showing that T(x,y)P ⊆W . Pick any (ẋ, ẏ) ∈ T(x,y)P .
We have both

∂F

∂x
ẋ+ ∂F

∂y
ẏ = 0 and ∂F

∂x
ẋ+ ∂F

∂y

(
DπY

(
DπRI

X ẋ
))

= 0.

By subtracting the latter equation from the former, we see that ẏ −
DπY

(
DπRI

X ẋ
)
∈ ker ∂F

∂y . Thus, (ẋ, ẏ) ∈W , and therefore T(x,y)P = W .

Remark 7.7. The assumption in Proposition 7.6 that P is the level set of
a map of constant rank is satisfied by any sufficiently small submanifold of
X × Y . More precisely, suppose that P is any embedded submanifold of X × Y .
By the local slice criterion [Lee13, Theorem 5.8], every point on P has a
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neighbourhood U , which is open in X × Y , such that U ∩ P is the zero set of a
map F : U → Rdim(X ×Y) of constant rank. Thus, Proposition 7.6 can be applied
to P ∩ U .

The utility of Proposition 7.6 is that FCRE problems can be defined either
purely in terms of equations (point 1) or purely geometrically (point 3). Both
approaches define the same class of problems.

7.3 Proofs of the main results

An essential part of the proof of Theorem 7.3 is that projecting the problem
onto X × Y does not introduce singularities if we look at the problem locally.
This is guaranteed by the following lemma.

Lemma 7.8. Let F : M → N be a smooth map of constant rank r. Then
every p ∈M has a neighbourhood U ⊆M such that F (U) is an r-dimensional
embedded submanifold of N .

Proof. By [Lee13, Theorem 4.12], there exist charts at p and F (p) such that F
is defined in coordinates by (x1, . . . , xdim M) 7→ (x1, . . . , xr, 0, . . . , 0) on some
neighbourhood U ′ of p. Let πr : U ′ → U ′ be the map that sets all but the first r
coordinates to zero, so that, locally, F = F ◦πr. By [Lee13, Theorem 5.8], πr(U ′)
is an embedded submanifold ofM. Since F |πr(U ′) is an immersion, F |πr(U ′) is a
local smooth embedding. The result follows from [Lee13, Proposition 5.2].

Now we can prove the main result of this chapter. The main idea is that the
projected problem P̃ satisfies the geometric definition of FCREs (i.e., item 3 of
Proposition 7.6).

Proof of Theorem 7.3. By assumption, the equation F (x, (y, z)) = c defines an
FCRE over the variables x and (y, z). Define the smooth manifold P := F−1(c)
and define the projection πX ×Y : P → X × Y. At any point (x, y, z) ∈ P, it
holds that T(x,y,z)P = kerDF (x, y, z). Thus,

kerDπX ×Y(x, y, z) = {(0, 0, ż) ∈ kerDF (x, y, z)} = {(0, 0)}× ker ∂

∂z
F (x, y, z),

(7.5)
where the last equality follows from the fact that DF is the sum of all partial
derivatives of F . By assumption, the dimension of the right-hand side is
independent of (x, y, z). Thus, πX ×Y has constant rank, so that, by Lemma 7.8,
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the point (x0, y0, z0) has a neighbourhood P̂ ⊆ P whose projection onto X × Y
is an embedded submanifold of X × Y.

Since F (x, (y, z)) = c defines an FCRE, it follows from Proposition 7.6 that
πX : P → X is a smooth submersion. In other words, the projection of T(x,y,z)P
onto TxX is always surjective. Hence, the projection of T(x,y)πX ×Y(P̂) =
DπX ×Y [T(x,y,z)P̂] is surjective as well. By Proposition 7.6 and Remark 7.7,
πX ×Y(P̂) is locally defined by the FCRE F̃ (x, y) = 0 for some unspecified map
F̃ : X × Y → Rdim(X ×Y). This proves the first assertion.

By Theorem 6.6, the derivative of the canonical solution map of the equation
F̃ (x, y) = 0 is

DH(x0) = −
(
∂

∂y
F̃ (x0, y0)

)†
∂

∂x
F̃ (x0, y0), (7.6)

which we will reformulate in terms of the derivatives of F . In the following,
all derivatives are implicitly evaluated at (x0, y0, z0) or its projections. By the
definition of the Moore–Penrose inverse, (i.e., A† := A|−1

(ker A)⊥ for any A), (7.6)
is equivalent to the system{

∂F̃
∂x + ∂F̃

∂y DH = 0
spanDH ⊥ ker ∂F̃

∂y

. (7.7)

The first line of (7.7) says that (ẋ, DH[ẋ]) ∈ kerDF̃ for all ẋ ∈ Tx0X . Since
πX ×Y(P̂) is a level set of F̃ and, likewise, P̂ is locally a level set of F , we have

kerDF̃ = T(x0,y0)πX ×Y(P̂) = DπX ×Y

[
T(x0,y0,z0)P̂

]
= DπX ×Y [kerDF ] .

Thus, the first lines of (7.2) and (7.7) are equivalent.

For the second condition, we have

ker ∂F̃
∂y

=
{
ẏ ∈ Ty0Y

∣∣∣ (0, ẏ) ∈ kerDF̃
}

= {ẏ ∈ Ty0Y | ∃ż ∈ Tz0Z : (0, ẏ, ż) ∈ kerDF}

= DπY

[
ker ∂F

∂(y, z)

]
,

which shows that the second condition in (7.2) is equivalent to that in (7.7).
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Finally, we show that solving for y in the equation F (x, y, z) = c is at least as
well-conditioned as solving for (y, z).

Proof of Proposition 7.5. Let H be the canonical solution map corresponding
to the FCRE F (x, (y, z)) = c and let H be the canonical solution map of the
problem P̃ ⊆ X̂ × Ŷ in Theorem 7.3.

For x in the domain of both H and H, we have

dY×Z(H(x0), H(x)) = min
(y,z)∈Y×Z
F (x,y,z)=c

dY×Z((y0, z0), (y, z))

⩾ min
(y,z)∈Y×Z
F (x,y,z)=c

dY(y0, y)

⩾ min
(y,z)∈Ŷ×Ẑ
F (x,y,z)=c

dY(y0, y)

= dY(H(x0), H(x)).

If we divide both sides by dX (x0, x) and take the limit supremum as x→ x0,
we obtain κ[H](x0) ⩾ κ[H](x0), as desired.

7.4 Computation of the condition number

This section presents two alternative characterisations of the condition number
that may be more useful for computational purposes. The first one is a translation
of the system (7.2) into concrete linear equations.

Proposition 7.9. Let F (x, y, z) = c be a CREP where F : X × Y × Z → RN

and X and Y have a Riemannian metric. At any solution (x0, y0, z0), write the
partial derivatives ∂F

∂x ,
∂F
∂y , and ∂F

∂z as matrices Jx, Jy, Jz in coordinates with
respect to orthonormal bases of Tx0X and Ty0Y and an arbitrary basis of Tz0Z.
Let Q be a matrix such that spanQ = (span Jz)⊥ and let U = [UT

y UT
z ]T be a

matrix such that JyUy +JzUz = 0 and spanU = ker [Jy Jz]. Then the columns

of the matrix A :=
[
QTJy

UT
y

]
are linearly independent. Furthermore,

κx 7→y[F−1(c)](x0, y0, z0) =
∥∥∥∥A+

[
−QTJx

0

]∥∥∥∥,
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where A+ is any left inverse of A, such as the Moore–Penrose inverse, and ∥·∥
is the operator norm.

Proof. In the following, we evaluate all derivatives implicitly at (x0, y0, z0) or
its projections. We start by finding concrete equations for the first constraint in
(7.2). For any (ẋ, ẏ) ∈ T(x0,y0)(X × Y), we have

(ẋ, ẏ) ∈ DπX ×Y [kerDF ]⇔ ∂F

∂x
ẋ+ ∂F

∂y
ẏ + ∂F

∂z
ż = 0 for some ż ∈ Tz0Z

⇔ ∂F

∂x
ẋ+ ∂F

∂y
ẏ ∈ span

(
∂F

∂z

)

⇔ QT

(
∂F

∂x
ẋ+ ∂F

∂y
ẏ

)
= 0

⇔ QTJy ˆ̇y = −QTJx ˆ̇x, (7.8)

where ˆ̇x and ˆ̇y are the coordinates of ẋ and ẏ, respectively.

Similarly, for the second requirement in (7.2), we have

ẏ ⊥ DπY

[
ker ∂F

∂(y, z)

]
⇔ ˆ̇y ⊥ [I 0] ker ([Jy Jz])

⇔ ˆ̇y ⊥ spanUy

⇔ UT
y

ˆ̇y = 0.

By combining these two observations, we see that (7.2) is equivalent to the
system

A ·DH =
[
−QTJx

0

]
, where A =

[
QTJy

UT
y

]
. (7.9)

Since this system has a unique solution, A has full rank and is thereby left-
invertible. Hence, the Moore–Penrose inverse of A is a left inverse [GVL13, §5.5.2].
Since the desired condition number is ∥DH∥, this concludes the proof.

Remark 7.10. Proposition 7.9 suggests computing the derivative of the solution
map by solving (7.9). Although this system has precisely one exact solution, it
may be overdetermined. It is possible to reduce the number of equations and
keep the same solution. For instance, (7.8) expresses that a vector that is known
to lie in span ∂F

∂(x,y) is also an element of span ∂F
∂z . The minimal number of linear

equations needed to express this is the codimension of span ∂F
∂z ∩ span ∂F

∂(x,y)
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as a subspace of span ∂F
∂(x,y) , but the number of equations used in (7.8) is the

codimension of span ∂F
∂z in RN . Methods to reduce the number of equations are

omitted from this discussion for simplicity.

Another characterisation of the condition number is given by the following
lemma. It captures the intuition that DH(x0)[ẋ] gives the smallest possible
change to y that solves the CREP when the input is perturbed by ẋ. Essentially,
it uncovers where the defining equations (7.2) come from: they are the critical
point equations of a convex optimisation problem.

Lemma 7.11. Suppose that the equation F (x, y, z) = c satisfies the assumptions
of Theorem 7.3 and that (x0, y0, z0) is any solution of the equation. Then the
solution of (7.2) is

DH(x0) : ẋ 7→ arg min
ẏ
∥ẏ∥ s.t. DF (x0, y0, z0)[ẋ, ẏ, ż] = 0 for some ż ∈ Tz0Z.

Consequently, κx7→y[F−1(c)](x0, y0, z0) is the operator norm of DH(x0).

Proof of Lemma 7.11. Given any ẋ ∈ Tx0X , write the set of (ẏ, ż) that solve
the linearisation of F (x, y, z) = c as

Lẋ := {(ẏ, ż) ∈ Ty0Y × Tz0Z |DF (x0, y0, z0)[ẋ, ẏ, ż] = 0} .

Note that L0 = DπY×Z

(
ker ∂F

∂(y,z)

)
. Thus, (7.2) defines DH(x0)[ẋ] as the

unique element in DπY [Lẋ] ∩DπY [L0]⊥.

Fix any vector ẋ ∈ Tx0X . The space Lẋ is defined by the linear system
∂F

∂(y,z) [ẏ, ż] = −∂F
∂x ẋ. Since L0 is defined by the same equations, but with

a different right-hand side, it follows from elementary linear algebra that L0 and
Lẋ are parallel. That is, Lẋ = L0 +vẋ for some vẋ ∈ Ty0Y×Tz0Z. Consequently,
DπY [Lẋ] and DπY [L0] are parallel. Hence, the vector in DπY [Lẋ] with the
smallest norm is orthogonal to DπY [L0] and thereby satisfies the defining
equations of DH(x0)[ẋ].

7.5 Example: individual factors of the Tucker
decomposition

We studied the condition number of the (orthogonal) Tucker decomposition
in Section 6.6. This condition number measures the sensitivity of all factors
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combined with respect to the input tensor. Using the techniques from this
chapter, we can study the sensitivity of individual factors. Again, we restrict
ourselves to the orthogonal variant of the Tucker decomposition.

To model the problem, let X ⊆ Rn1×···×nD be the set of tensors of multilinear
rank (m1, . . . ,mD), which is a manifold by the results in Sections 3.4.1 and 4.3.
Define

GT : Rm1×···×mD
⋆ × St(n1,m1)× · · · × St(nD,mD)→ X

(C , U1, . . . , UD) 7→ (U1 ⊗ · · · ⊗ UD)C

and
FT (X , C , U1, . . . , UD) := X −GT (C , U1, . . . , UD), (7.10)

where X ∈ X . Then the Tucker decomposition problem is defined by the zero
set of FT .

The sensitivity of the factor Ud in the Tucker decomposition with respect
to perturbations in X is measured by κX 7→Ud

[F−1
T (0)]. The generic variable

names x, y, and z used in the introduction would then refer to X , Ud, and
(C , U2, . . . , UD), respectively. Likewise, the sensitivity of C is measured by
κX 7→C [F−1

T (0)], in which case y = C and z = (U1, . . . , UD). For simplicity,
we omit the subscripts (e.g., x0, y0, z0) when referring to the particular solution
where the condition number is evaluated. The condition number is given by
the following proposition. As in Proposition 6.19, the condition number can be
formulated in terms of the singular values in the higher-order singular value
decomposition [DLDMV00a].

Proposition 7.12. Let P be the zero set of (7.10) and let (X , C , U1, . . . , UD) ∈
P be any point. Endow the domain of FT with the Euclidean (i.e., Frobenius)
norm. Then, for all d = 1, . . . , D,

κX →Ud
[P](X , C , U1, . . . , UD) =

{
0 if Ud is square,
σmin(C(d))−1 otherwise,

(7.11)

where σmin(C(d)) is the smallest singular value of the dth flattening of C .
Furthermore,

κX →C [P](X , C , U1, . . . , UD) = 1. (7.12)

Proof of (7.11). Since we can permute the arguments of FT , we can assume
without loss of generality that d = 1. Let DH(X ) be the differential of the
canonical solution map and let Ẋ ∈ TXX be a generic tangent vector. The



140 WHICH VARIABLES OF A NUMERICAL PROBLEM ARE ILL-CONDITIONED?

equations (7.2) that define DH can be specialised to the Tucker decomposition
problem as follows:{

Ẋ = DGT [Ċ , U̇1, . . . , U̇D] for some Ċ , U̇2, . . . , U̇D

U̇1 ⊥ DπSt(n1,m1) [kerDGT ]
, (7.13)

where U̇1 := DH(X )[Ẋ ] and DGT is evaluated at (C , U1, . . . , UD).

Before solving this, we simplify the second condition in (7.13). By (6.15),

DπSt(n1,m1) [kerDGT ] = {U1Q̇ | Q̇ ∈ TIO(m1)} ⊆ {U1Q̇ | Q̇ ∈ Rm1×m1},

where O(m1) is the orthogonal group. Thus, the second constraint in (7.13) is
satisfied on the sufficient (but not necessary) condition that U̇T

1 U1 = 0

We can solve (7.13) for U̇1 as a function of Ẋ as follows. We know from
Proposition 4.9 that every Ẋ ∈ TXX admits a unique decomposition of the
form

Ẋ = (U̇1 ⊗ · · · ⊗ UD)C + · · ·+ (U1 ⊗ · · · ⊗ U̇D)C + (U1 ⊗ · · · ⊗ UD)Ċ (7.14)

= DGT [Ċ , U̇1, . . . , U̇D]

where Ċ ∈ Rm1×···×mD and U̇T
d Ud = 0 for all d. The factor U̇1 in this

decomposition solves (7.13) given Ẋ . Since DH(X ) is the unique linear map
that takes Ẋ ∈ TXX to the solution U̇1 of (7.13), DH(X )[Ẋ ] evaluates to the
factor U̇1 in the decomposition (7.14), for any Ẋ ∈ TXX .

Assume that U1 is square. Then the only matrix U̇1 that satisfies the constraint
U̇T

1 U1 = 0 is the zero matrix. Since DH(X )[Ẋ ] satisfies this constraint for any
Ẋ , it follows that DH(X ) is the zero map. Thus, the condition number is zero.
In the remainder, we assume that U1 is not square, so that the constraint
U̇T

1 U1 = 0 is nontrivial.

The operator norm of DH(X ) can be calculated as
∥∥DH(X )|(ker DH(X ))⊥

∥∥. That
is, we can restrict DH to its row space. To determine this space, note that
all summands on the right-hand side of (7.14) are pairwise orthogonal in the
Euclidean inner product on Rn1×···×nD , since U̇T

d Ud = 0 for all d. In addition,
kerDH(X ) consists of all Ẋ such that the first term in (7.14) vanishes. Hence,

(kerDH(X ))⊥ =
{

(U̇1 ⊗ U2 ⊗ · · · ⊗ UD)C
∣∣ U̇T

1 U1 = 0
}
,

so that
DH(X )|(ker DH(X ))⊥ : (U̇1 ⊗ U2 ⊗ · · · ⊗ UD)C 7→ U̇1.
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If we represent tensors as their first standard flattening, the inverse of this map
is L : U̇1 7→ U̇1C(1)(U2 ⊘ · · · ⊘ UD)T where ⊘ is the Kronecker product. The
singular values of L are the singular values of C(1). In conclusion:

∥DH(X )∥ =
∥∥DH(X )|(ker DH(X ))⊥

∥∥ = 1/σm1(C(1)).

Proof of (7.12). We use the characterisation of DH from Lemma 7.11, i.e.,

DH(X )[Ẋ ] = arg min
Ċ

∥∥Ċ
∥∥ s.t. Ẋ = DGT [Ċ , U̇1, . . . , U̇D] for some U̇1, . . . , U̇D.

For any Ẋ ∈ TXX , the minimum can be estimated by decomposing Ẋ uniquely
as Ẋ = DGT [Ċ , U̇1, . . . , U̇D] with U̇T

d Ud = 0 for all d, as in (7.14). If we multiply
(7.14) on the left by (UT

1 ⊗ · · · ⊗ UT
D), all but one term vanish and we obtain

Ċ = (UT
1 ⊗ · · · ⊗ UT

D)Ẋ . Thus, in this specific decomposition of Ẋ , we have∥∥Ċ
∥∥ ⩽

∥∥Ẋ
∥∥. It follows that the operator norm of DH(X ) is at most 1.

To show that ∥DH(X )∥ = 1, it suffices to find a tangent vector Ẋ such that∥∥DH(X )[Ẋ ]
∥∥ =

∥∥Ẋ
∥∥. Pick the radial direction Ẋ := X = (U1 ⊗ · · · ⊗ UD)C . We

can see that DH(X )[Ẋ ] = C by an argument from the proof of Proposition 6.19,
which we repeat here.

The kernel of DGT is the tangent space to the preimage G−1
T (X ). Since the

projection of G−1
T (X ) onto the first component is the orbit of C under the action

of O(m1)× · · · ×O(mD) (see e.g. (6.15)), it is contained in the sphere of radius
∥C∥. Hence, the radial direction Ċ = C is normal to DπRn1×···×nD

⋆
[kerDGT ] and

thereby solves the critical point equations (7.2). It follows that C = DH(X )[Ẋ ]
when Ẋ = X . Since ∥C∥ = ∥X∥, this completes the proof.

Proposition 7.12 has the following heuristic explanation. The factor U1 gives a
basis for the column space of the flattened tensor X(1) ∈ Rn1×n2···nD . If U1 is
square, then span(X(1)) = Rn1 . If a perturbed tensor X̃ is sufficiently close to
X , its column space is also Rn1 by the Eckart–Young theorem [SS90, Theorem
IV.4.18]. Therefore, X̃ admits a Tucker decomposition whose first factor is U1.
Alternatively, if U1 is not square, its column space may rotate as X is perturbed
to X̃ . Standard results such as Wedin’s sin Θ-theorem [SS90, Theorem V.4.4]
bound the largest rotation angle in terms of the size of the perturbation to X̃
and σm1(X(1))−1. Thus, it is natural to expect the latter quantity to be the
condition number, and this expectation is confirmed by Proposition 7.12.
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Remark 7.13. By [BC13, Section 14.3.2], the condition number of computing
the image of a matrix X ∈ Rn1×n2 of rank m is 1/σm(X). Since computing the
U1 factor of the Tucker decomposition of a tensor X is equivalent to computing
an orthonormal basis of span(X(1)), one might wonder about the difference
between this condition number and the expression in Proposition 7.12. There
are two main conceptual differences:

1. The formulation used in [BC13] quotients out the choice of basis for the
image in order to obtain a unique solution, as described in Section 6.4. By
contrast, Proposition 7.12 is about the condition number in Definition 7.4,
which defines the error in terms of a least-squares projection.

2. The input space in Proposition 7.12 consists of all tensors of multilinear
rank (m1,m2,m3). If we flatten a tensor X to X(1) and apply the approach
from [BC13], the corresponding condition number takes all perturbations
X̃ of X into account such that X̃(1) has rank m1. By contrast, our approach
considers only perturbations of X to X that preserve the multilinear rank.
That is, our approach has a more constrained input space.

Remark 7.14. Proposition 7.12 fits in perfectly with two results stated earlier.
We know from the general result of Proposition 7.5 that solving for any
one solution variable (e.g., one factor of the decomposition) is at most as
ill-conditioned as solving for all solution variables combined. It does not follow
in general that there is a single variable that is as ill-conditioned as all variables
combined. However, by Proposition 6.19 and Proposition 7.12, this is the case
for the Tucker decomposition: the condition number of the full decomposition
is max

(
{1} ∪ {σmin(C(d))−1 |md < nd}

)
, i.e., the maximum of the condition

numbers of the individual factors.

7.6 Conclusion

In this chapter, we extended the theory of condition from Chapter 6. The
new condition number is defined for (possibly underdetermined) constant-rank
elimination problems (CREPs). The condition number estimates the minimal
change in the solution variable y for the worst-case infinitesimal perturbation
to the input x, keeping the latent variable z close to its reference value. By
measuring the error this way, we find a lower bound for the condition number
of a CREP based on the eliminated variables: if solving for any subset of the
variables is ill-conditioned, so must be solving for all variables combined.

The condition number of a CREP can be characterised in terms of the partial
derivatives of the defining equations. By using this result, we derived a condition
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number of each factor in an orthogonal Tucker decomposition. The results
confirm two simple intuitions. First, the dth basis in a Tucker decomposition is
ill-conditioned insofar as the dth flattening of the tensor has a small singular
value. Second, the condition number of the decomposition as a whole equals
that of the most sensitive factor.





Chapter 8

Conclusion

Every numerical problem has a condition number, which is a measure of the
difficulty of solving the problem in finite precision. This dissertation presents
new results on the theory and computation of condition numbers, particularly
with applications to tensor decompositions.

The main conceptual innovation of the thesis is the modular theory of condition
developed in chapters 6 and 7. This theory adds a new layer of explainability to
the condition number. At the heart of this layer of explainability is the condition
number of underdetermined problems, which was not a thoroughly explored
concept in the literature.

With the proposed theory of condition, it is possible to isolate the constraints
that make a problem ill-conditioned. This is achieved by comparing the condition
number of the problem to any relaxation, for which a condition number was
introduced in Chapter 6. The interpretability is further enhanced by the
condition numbers of each individual solution variable. Thus, the techniques
we introduced make it possible to explain the condition number at the level of
either the constraints, the solution variables, or some combination thereof.

Aside from the modular theory of condition, the results of chapters 4 and 5 are
contributions to the theory and computation of condition numbers of tensor
decompositions. In particular, we found a practical algorithm to compute the
sensitivity of additive decompositions of large tensors of low rank.

Taking all chapters together, the results in this dissertation make it practically
feasible to compute the condition number of many tensor decompositions, such
as polyadic, Waring, (structured) block term, and Tucker decompositions. The
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techniques introduced in this dissertation can also be applied to models such as
tensor trains or the factor matrices of block-term decompositions.

8.1 Contributions by chapter

The contributions of each chapter can be summarised as follows.

Chapter 2

• An updated proof of Rice’s theorem (Theorem 2.4) that rectifies one of
the assumptions in the original publication.

• A presentation of the geometric theory of condition numbers that emphas-
ises the sensitivity of solving equations numerically. The presentation is
non-standard in that popular texts on condition either disregard geometric
aspects [Hig02; TB97] or emphasise the relevance to complexity theory
rather than numerical analysis [Blu+98; BC13]. The unique combination of
geometry and sensitivity is intended to connect the literature on numerical
analysis and differential geometry.

Chapter 4

• A joint analysis of basic manifolds (called structured Tucker manifolds)
involved in tensor decompositions. The analysis establishes smoothness
(Proposition 4.8), group symmetries (Proposition 4.6), and an orthonormal
basis (Proposition 4.9).

• A characterisation of the condition number of block term decompositions
in terms of the so-called Terracini matrix (eq. 4.11). Estimates of the
condition number are provided as well.

• A proof of the existence of subspace constrained SBTDs (Proposition 4.13),
generalising the analogous result for polyadic decompositions [SL08,
Proposition 3.1].

• An invariance property of the condition number of SBTDs (Theorem 4.14)
that can be exploited to speed up the computation of the condition number
(Section 4.5.2). Numerical evidence (Section 4.6) confirms the expected
implications for sensitivity and complexity.
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Chapter 5

• An invariance property of symmetric tensor decompositions (Theorem 5.1)
that is slightly weaker than the analogous Theorem 4.14.

• A proof of the equality of the condition numbers of polyadic and Waring
decompositions of rank 2 (Proposition 5.3), supplemented with numerical
evidence for the case of higher ranks.

Chapter 6

• A theory of condition for a general class of underdetermined problems.
Notable features of the general theory include:

– a theorem on the existence and smoothness of the canonical solution
map (Theorem 6.6),

– an expression of the condition number that can be computed
numerically (Theorem 6.6 and Definition 6.7),

– the relation to the constraining or relaxation of numerical problems
(Corollary 6.2),

– consistency with problems with unique solutions ((6.4) and Defini-
tion 6.7),

– equivalence to the known approach based on quotient manifolds
whenever that approach is applicable (Proposition 6.12).

• A computation of the condition number of two-factor matrix decom-
positions (Proposition 6.14) and a derivation of an optimal two-factor
decomposition (Corollary 6.16).

• An expression for the condition number of orthogonal Tucker decom-
positions in terms of the singular values of the canonical flattenings
(Proposition 6.19). Numerical evidence confirms that the associated
asymptotic error bound is a good approximation in practice (Section 6.7).

Chapter 7

• A theory of condition of elimination of variables. This includes two
equivalent definitions of the condition number (Definition 7.4 and
Lemma 7.11) and an expression that can be used to compute the condition
number numerically (Theorem 7.3). The condition number measures the
contribution of each variable to the overall sensitivity, as supported by
Proposition 7.5.



148 CONCLUSION

• Concrete expressions of the condition numbers of the factors in any
orthogonal Tucker decomposition (Proposition 7.12).

8.2 Suggested further research

One unsolved problem encountered in this dissertation is Conjecture 5.2, i.e,
the statement that the condition number of any Waring decomposition is equal
the condition number of the equivalent solution to the polyadic decomposition
problem. Two strictly weaker conjectures may be more feasible to resolve:

1. At any WD (A1, . . . ,AR), its condition number as a WD and as a PD
are either both finite or both infinite. This conjecture can also be phrased
purely algebraically (i.e., without a metric), because the condition number
of either decomposition problem is finite if and only if the associated
Terracini matrix has full rank. Geometrically, it says that the tangent
spaces TA1V, . . . , TAR

V intersect if and only if TA1S, . . . , TAR
S intersect,

where V and S are the Veronese and Segre manifold, respectively. This
suggests a proof based on algebraic geometry. Section 5.3 discusses the
limitations of the proof technique in Chapter 5.

2. The condition number of a Waring decomposition is invariant under
orthogonal Tucker compression. Only the case of non-minimal compression
(i.e., Theorem 5.1) has been solved for arbitrary rank. I believe that a
generalised proof similar to those of Theorem 5.1 and Theorem 4.14 is
possible, but I have not found it. The main obstacle trying to prove the
general case was that the basis of the tangent space of the Veronese
manifold consists of sums of tensor products, whereas the tangent space
to the structured Tucker manifold admits basis vectors that are simple
multilinear products (Proposition 4.9). This complicates the estimation of
inner products.

Another continuation of the work in this text would be the development of
algorithms to compute the condition number of some concrete problems. The
following examples would be natural applications of Chapters 6 and 7.

1. The block-term decomposition has several variants, one of which is the
decomposition of a tensor A as a A =

∑R
r=1 Ar where each Ar is a point on

the Tucker manifold (i.e., a tensor of low multilinear rank). The condition
number of this variant was discussed in Chapter 4. A more common variant
would factor each Ar in this decomposition as a multilinear product [DL11],
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which gives a decomposition of the form

A =
R∑

r=1
(Ur

1 ⊗ · · · ⊗ Ur
D)Cr.

This variant combines a join decomposition and Tucker decompositions.
The sensitivity of all factors with respect to A can be analysed using the
techniques of Chapter 6. Similarly, the sensitivity of each individual factor
is expressed by the condition number defined in Chapter 7. This would be
relevant for a perturbation analysis of the blind source separation problem
in Section 3.5.2.

2. In algebraic computer vision, the 3D reconstruction problem is the
estimation of m camera configurations and points p1, . . . , pn in three-
dimensional space given m pictures of all n points [HZ03; KK22]. Taking
the ith picture is modelled as a linear map Ci : P3 → P2, where PN

denotes N -dimensional projective space. The 3D reconstruction problem
can be defined as the inversion of the map

G : (C1, . . . , Cm, p1, . . . , pn) 7→ (C1p1, . . . , C1pn, C2p1, . . . , Cmpn).

This problem is underdetermined because there is no canonical choice of
coordinates of P3. That is, given any change of basis M : P3 → P3, we have
G(C1M

−1, . . . , CmM
−1,Mp1, . . . ,Mpn) = G(C1, . . . , Cm, p1, . . . , pn).

Because underdetermined problems do not have a condition number in the
usual sense, the sensitivity analysis of 3D reconstruction has been limited
to the perturbation theory of so-called fundamental or essential matrices
[FKK22]. Barring a precise definition, these matrices are a somewhat
difficult-to-interpret invariant of the solution that is independent of the
choice of basis in P3. In discussions with Joe Kileel, I have determined
that the condition number from Chapter 7 would be a viable alternative
measure of sensitivity and can either be used for the sensitivity of the
cameras, the points, or both.

Finally, some work could be done to connect the condition number of an FCRE
to other notions of condition than sensitivity, such as those in Section 2.4. Dégot
[Dé00] introduced a condition-like number that measures the sensitivity of the
solutions of underdetermined homogeneous polynomial systems. This condition
number is inversely proportional to the distance to ill-posedness in the sense of
Section 2.4. This makes it plausible that the condition number of more general
underdetermined FCREs admits a similar characterisation.
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